Seja P(x) um polinômio de grau 5, com coeficientes reais,
admitindo 2 e i como raízes. Se P(1)P(-1) < 0, então o número
de raízes reais de P(x) pertencentes ao intervalo ]-1, 1[ é:
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4






é maior que zero, os outros dois fatores devem possuir sinais opostos. Logo: 

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)