por Jonatan » Qua Jun 16, 2010 15:22
No desenvolvimento de

há 10 termos. Qual a soma dos coeficientes destes termos?
Eu tenho esta questão resolvida aqui, entretanto, não estou conseguindo interpretar sua resolução... o que sugere é o seguinte:
Foi feito o desenvolvimento de

, pois como há 10 termos, significa que o expoente do binômio todo é 9... Feito o desenvolvimento, atribui-se 1 ao valor de x (x = 1) e ficou assim:

=

.
Só que eu não entendi o motivo de jogar o 1 no lugar de x... Alguém pode me ajudar? Grato.
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Lucio Carvalho » Qua Jun 16, 2010 16:29
Olá Jonatan,
Primeiramente, fazemos o desenvolvimento de

. Obtemos:

Como podemos verificar, a soma dos coeficientes dos 10 termos é:

=

Espero ter ajudado!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por Jonatan » Qua Jun 16, 2010 17:03
Olá, Lúcio. Entendi certinho o que você fez, me ajudou muito. Entretanto, teria uma forma mais rápida de fazer este exercício, visto que ''9'' já é um expoente considerável de desenvolvê-lo. Digo isto por que essas questões são de vestibulares, e tais concursos exigem cada vez mais rapidez na resolução das questões. Mesmo assim, muito obrigado pela atenção em resolver o exercício para mim.
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qua Jun 16, 2010 21:03
Um exemplo simples para ilustrar o porque que x = 1 ajuda nestas situações: considere o polinômio do segundo grau

. Imagine que eu queira a soma dos coeficientes. Para x = 1, temos:

, que é a soma dos coeficientes.Ao substituir x por 1, você está multiplicando todos os coeficientes por um número neutro, que não altera o produto, sobrando apenas os coeficientes.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Jonatan » Qua Jun 16, 2010 21:13
É verdade, Fantini... Lendo o que você explicou dá para entender e agora mesmo eu fiz mais exercícios e igualei os coeficientes a 1 e deu tudo certo
Essa propriedade de fazer x = 1 para achar a soma dos coeficientes me recorda de alguma coisa das aulas de polinômios, mas não estou certo disto nem cheguei no assunto ainda, estudarei polinômios um pouco mais pra frente! Muito obrigado, me cadastrei no fórum hoje mesmo e já aprendi muito em um só dia... é ótimo saber que existem pessoas prestativas e atenciosas colaborando com o pessoal que estuda sozinho em casa, que é o meu caso. Muito obrigado, mais uma vez!
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- coeficientes dos polinômios
por vanessafey » Qui Jul 07, 2011 19:20
- 2 Respostas
- 2196 Exibições
- Última mensagem por vanessafey

Qui Jul 07, 2011 22:38
Matrizes e Determinantes
-
- funções com cálculo de coeficientes
por ezidia51 » Qua Mar 28, 2018 22:54
- 3 Respostas
- 7250 Exibições
- Última mensagem por ezidia51

Qui Mar 29, 2018 17:50
Funções
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:38
- 0 Respostas
- 1356 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:38
Cálculo: Limites, Derivadas e Integrais
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:40
- 0 Respostas
- 1346 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:40
Cálculo: Limites, Derivadas e Integrais
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:44
- 0 Respostas
- 1317 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.