• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em vetor

Dúvida em vetor

Mensagempor elis81 » Qui Abr 15, 2010 20:20

Alguém poderia me ajudar a fazer o seguinte exercício?
a)Mostre que v=(a,b) e w(-b,a) são vetores ortogonais;
b) Use o resultado da parte (a) para encontrar dois vetores ortogonais a v=(2,-3);
c) encontre dois vetores unitários que são ortogonais a (-3,4)
elis81
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 15, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Dúvida em vetor

Mensagempor Mathmatematica » Dom Jun 13, 2010 01:25

a) Dois vetores são ortogonais, ou seja, perpendiculares se, e somente se, o produto escalar dos dois der zero. Logo:

v.u=(a,b).(-b,a)=-ab+ab=0 \  \ \therefore c.q.d.
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Dúvida em vetor

Mensagempor Mathmatematica » Dom Jun 13, 2010 01:30

b) Seguindo a técnica do item a, para obtermos um vetor perpendicular a outro basta conservar uma de suas coordenadas e usar o inverso aditivo na outra. Em seguida, troque a abscissa pela ordenada. Logo, os dois vetores procurados são (-3,-2) \  e \ (3,2).
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Dúvida em vetor

Mensagempor Mathmatematica » Dom Jun 13, 2010 01:41

c) Seja (a,b) um vetor procurado.

Sabemos que esse vetor é unitário. Então, \sqrt{a^2+b^2}=1\Longrightarrow a^2+b^2=1.

Sabemos também que esse vetor é perpendicutar ao vetor (-3,4). Logo, (-3,4).(a,b)=0\Longrightarrow 4b=3a.

Fazendo b=\dfrac{3a}{4} e substituindo em a^2+b^2=1 temos:

a^2+\dfrac{9a^2}{16}=1\Longrightarrow 25a^2=16\Longrightarrow a=\pm \dfrac{4}{5}

Para a=\dfrac{4}{5} temos b=\dfrac{3}{5}.

Para a=-\dfrac{4}{5} temos b=-\dfrac{3}{5}.

Logo, os vetores procurados são \left(\dfrac{4}{5},\dfrac{3}{5}\right) \ e \ \left(-\dfrac{4}{5},-\dfrac{3}{5}\right).

Bons estudos Elis.

Observações:
_Qualquer erro, por favor, AVISEM!!!!!!!!!!!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: