por CloudP4 » Seg Jun 07, 2010 23:57
Olá pessoal, novo aqui no fórum, e em uma lista de exercicios dada pelo meu professor, parei nesses 2 problemas, ainda tenho algumas dúvidas quando ao uso de raíz e do uso de expressões nesse formato

![\lim_{x \rightarrow 3} \frac{\sqrt[]{x} - \sqrt[]{3}}{x-3} \lim_{x \rightarrow 3} \frac{\sqrt[]{x} - \sqrt[]{3}}{x-3}](/latexrender/pictures/b82ac6c9107e592e5873d5251a393b7b.png)
Aos que puderem me explica como pelo menos começar, já agradeço.
Abraços.
-
CloudP4
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Jun 07, 2010 23:45
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng. Civil
- Andamento: cursando
por Molina » Ter Jun 08, 2010 00:03
Bem-vindo e boa noite!
Em casos em que o limite dá

ou

podemos usar a Regra de L'Hopital. Mas você só pode usar essa regra depois de ver derivadas. Caso não tenha visto, informe que tentamos por outros meios..
Bom estudo!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por CloudP4 » Ter Jun 08, 2010 00:18
No caso, ainda não vi derivada, limite acho que a quase 2 meses desde que comecei a ver. Ainda não cheguei a Derivada.
O meu caso é que o professor apresentou em seus exemplo algo mais "simples", e não tenho uma base muito boa para esse tipo de exercicio.
-
CloudP4
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Jun 07, 2010 23:45
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng. Civil
- Andamento: cursando
por Molina » Ter Jun 08, 2010 01:07
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Molina » Ter Jun 08, 2010 07:59
Eh verdade. Errei por excesso, hehe! Mas o resultado da o mesmo.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por CloudP4 » Ter Jun 08, 2010 08:52
Opa muito bom, só não entendi ainda o porque a equação fica desse jeito após "ajustar o númerador", no caso, da onde surgiu esse

-
CloudP4
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Jun 07, 2010 23:45
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng. Civil
- Andamento: cursando
por MarceloFantini » Dom Jun 13, 2010 19:04
É só fazer o mmc.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercícios de cálculo 3
por ezidia51 » Sáb Nov 09, 2019 21:27
- 0 Respostas
- 5038 Exibições
- Última mensagem por ezidia51

Sáb Nov 09, 2019 21:27
Cálculo: Limites, Derivadas e Integrais
-
- exercícios de cálculo 3
por ezidia51 » Sáb Nov 09, 2019 21:32
- 1 Respostas
- 3008 Exibições
- Última mensagem por ezidia51

Sáb Nov 09, 2019 21:34
Cálculo: Limites, Derivadas e Integrais
-
- exercícios de cálculo 3
por ezidia51 » Sáb Nov 09, 2019 21:39
- 1 Respostas
- 4168 Exibições
- Última mensagem por adauto martins

Dom Nov 10, 2019 00:29
Cálculo: Limites, Derivadas e Integrais
-
- exercícios de cálculo 3
por ezidia51 » Dom Nov 10, 2019 15:22
- 3 Respostas
- 7186 Exibições
- Última mensagem por adauto martins

Dom Nov 10, 2019 21:07
Cálculo: Limites, Derivadas e Integrais
-
- Duvida no exercícios de calculo II
por 1marcus » Dom Abr 26, 2020 16:32
- 2 Respostas
- 5170 Exibições
- Última mensagem por adauto martins

Sáb Mai 02, 2020 14:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.