• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercícios Calculo I - Limite

Exercícios Calculo I - Limite

Mensagempor CloudP4 » Seg Jun 07, 2010 23:57

Olá pessoal, novo aqui no fórum, e em uma lista de exercicios dada pelo meu professor, parei nesses 2 problemas, ainda tenho algumas dúvidas quando ao uso de raíz e do uso de expressões nesse formato
\lim_{x \rightarrow 2} \frac{\frac{1}{x} - \frac{1}{2}}{x-2}

\lim_{x \rightarrow 3} \frac{\sqrt[]{x} - \sqrt[]{3}}{x-3}

Aos que puderem me explica como pelo menos começar, já agradeço.

Abraços.
CloudP4
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 07, 2010 23:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Civil
Andamento: cursando

Re: Exercícios Calculo I - Limite

Mensagempor Molina » Ter Jun 08, 2010 00:03

Bem-vindo e boa noite!

Em casos em que o limite dá \frac{0}{0} ou \frac{\infty}{\infty} podemos usar a Regra de L'Hopital. Mas você só pode usar essa regra depois de ver derivadas. Caso não tenha visto, informe que tentamos por outros meios..

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Exercícios Calculo I - Limite

Mensagempor CloudP4 » Ter Jun 08, 2010 00:18

No caso, ainda não vi derivada, limite acho que a quase 2 meses desde que comecei a ver. Ainda não cheguei a Derivada.
O meu caso é que o professor apresentou em seus exemplo algo mais "simples", e não tenho uma base muito boa para esse tipo de exercicio.
CloudP4
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 07, 2010 23:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Civil
Andamento: cursando

Re: Exercícios Calculo I - Limite

Mensagempor Molina » Ter Jun 08, 2010 01:07

CloudP4 escreveu:No caso, ainda não vi derivada, limite acho que a quase 2 meses desde que comecei a ver. Ainda não cheguei a Derivada.
O meu caso é que o professor apresentou em seus exemplo algo mais "simples", e não tenho uma base muito boa para esse tipo de exercicio.


Certo, vamos lá então:

\lim_{x \rightarrow 2} \frac{\frac{1}{x} - \frac{1}{2}}{x-2}

"Ajustanto" o numerador...

\lim_{x \rightarrow 2} \frac{\frac{2-x}{2x}}{x-2}=\lim_{x \rightarrow 2} \frac{2-x}{2x}*\frac{1}{x-2}

Agora faremos uma substituição. Chamaremos de 2-u=x, com isso -u=x-2. E quando x \rightarrow 2, u \rightarrow 0

Reescrevendo nosso limite, com as novas notações...


\lim_{x \rightarrow 2} \frac{2-x}{2x}*\frac{1}{x-2}=\lim_{u \rightarrow 0} \frac{u}{2*(2-u)}*\frac{1}{-u}=

=\lim_{u \rightarrow 0} \frac{1}{-2*(2-u)}=\frac{-1}{4}

Acho que o segundo exemplo se resolve pelo mesmo truque de substituição.


Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Exercícios Calculo I - Limite

Mensagempor MarceloFantini » Ter Jun 08, 2010 04:38

Molina, acredito que no primeiro não precisa fazer mudança de variável, veja:

\lim_{x \to 2}  \frac { \frac{2 - x}{2x} } {x - 2} = \lim_{x \to 2}  \frac{- (x - 2)}{2x} \cdot \frac {1}{x-2} = - \frac{1}{4}

No segundo:

\lim_{x \to 3} \frac { \sqrt {x} - \sqrt {3} } { (\sqrt {x} - \sqrt {3})(\sqrt {x} + \sqrt {3})} = \frac {1}{2\sqrt{3}}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Exercícios Calculo I - Limite

Mensagempor Molina » Ter Jun 08, 2010 07:59

Eh verdade. Errei por excesso, hehe! Mas o resultado da o mesmo. :)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Exercícios Calculo I - Limite

Mensagempor CloudP4 » Ter Jun 08, 2010 08:52

Opa muito bom, só não entendi ainda o porque a equação fica desse jeito após "ajustar o númerador", no caso, da onde surgiu esse \frac{2-x}{2x}
CloudP4
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 07, 2010 23:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Civil
Andamento: cursando

Re: Exercícios Calculo I - Limite

Mensagempor MarceloFantini » Dom Jun 13, 2010 19:04

É só fazer o mmc.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D