por thierryvdb » Ter Jun 01, 2010 09:30
Srs. Bom dia,
Estou com algumas duvidas em relação ao uso de limites e entre elas a que não consigo visualizar o andamento após aplicar regras de derivador por exemplo:
Tenho a seguinte função a derivar:

A regra da soma diz de forma simples ( A derivada do termo a + a derivada do termo b ..... n );
Utilizando a regras da raiz:

, então utiliza-se a derivada de u'/k.

Obs: não consegui expressar utilizando o LaTeX ( Ler-se derivada de u sobre k vezes raiz de u, elevado a k menos 1, sendo k o valor da raiz. ):
Obtendo a resposta utilizando esta regra, devo parar neste ponto ou devo continuar, utilizando mmc etc? Como faço?
A minha segunda duvida esta reclacionado quando a partir do resultado de uma derivida encontramos outra derivida, podemos continuar derivando até que momento? Ou devo aplicar a regra das derivadas apenas para obter o primeiro resultado e o resto é so calcular, produtos notaveis, etc?
Se alguem tiver algum material que possa tirar essas minhas duvidas agradeço.
Obrigado a todos pela atenção;
-
thierryvdb
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Jun 01, 2010 08:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
por Neperiano » Ter Jun 01, 2010 13:51
Ola
Eu não entendi o jeito que voce derivou, mas de qualquer jeito irei resolve-la dai voce veja se era isto que queria
Primeiramente tire a raiz, então
f(x)=(x+3)^1/2 + (x-3)^1/2
Agora voce deve utilizar a regra de uma função dentro da outra
u=x+3
f(u)=u^1/2
e
u=x-3
f(u)=u^1/2
Agora derive
(1)(1/2u^1/2-1) + (1)(1/2u^1/2-1)
(1/2(x+3))^-1/2 + (1/2(x-3))^-1/2
(1/2x+3/2)^-1/2 + (1/2x-3/2)^-1/2
Agora voce pode juntar as duas se quise, algumas coisas vão cortar
Espero ter ajudado
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por MarceloFantini » Ter Jun 08, 2010 19:08
Até onde derivar depende de como é o problema e qual o seu objetivo, não há uma 'regra' de até onde deve-se prosseguir. Sobre juntar tudo ou não, a escolha é sua. Existem casos que convém deixar tudo em uma única forma, outros não há importância em deixar as partes separadas.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite - como resolver um lim quando temos raiz^2 e raiz^3.
por Monica santos » Sex Ago 16, 2013 14:22
- 4 Respostas
- 3933 Exibições
- Última mensagem por young_jedi

Sex Ago 16, 2013 19:01
Cálculo: Limites, Derivadas e Integrais
-
- (derivadas) derivadas com raiz como se faz
por jana garcia » Qua Jun 25, 2014 00:28
- 1 Respostas
- 2821 Exibições
- Última mensagem por e8group

Qua Jun 25, 2014 01:13
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida de derivadas em Fração e em raíz
por ederjuniormg » Qua Jun 27, 2012 17:35
- 1 Respostas
- 10871 Exibições
- Última mensagem por e8group

Qua Jun 27, 2012 18:13
Cálculo: Limites, Derivadas e Integrais
-
- Provar lim f(x)g(x) =0 quando o x tende a p
por Danilct » Seg Dez 07, 2015 22:00
- 0 Respostas
- 2145 Exibições
- Última mensagem por Danilct

Seg Dez 07, 2015 22:00
Cálculo: Limites, Derivadas e Integrais
-
- Quando termina a Integral ?
por lufer17 » Qui Nov 22, 2018 15:30
- 0 Respostas
- 6174 Exibições
- Última mensagem por lufer17

Qui Nov 22, 2018 15:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.