• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Exponencial

Inequação Exponencial

Mensagempor Karina » Sáb Mai 29, 2010 17:31

A relação P=6400\left(1 - {2}^{-0,1T}\right) descreve o crescimento de uma população de microorganismos T dias após o instante
zero. O valor de P é superior a 6300 se, e somente se, T satisfazer a condição

a) 2<t<16
b) t<60
c) t<30
d) t>60
e) 32<t<64

Eu consegui resolver por substituição dos valores das respostas na inequação
mas isso demora muito, alguem consegue resolver essa inequação?
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Inequação Exponencial

Mensagempor Douglasm » Dom Mai 30, 2010 17:27

Olá Karina. Para resolver essa inequação, basta fazer o seguinte:

6400(1-2^{-0,1T})\; > \; 6300 \; \therefore

100 \; > \; 6400(2^{-0,1T}) \; \therefore

\frac{1}{64} \; > \; 2^{-0,1T} \; \therefore

2^{-6} \; > \; 2^{-0,1T} \; \therefore

-6 \; > \; -0,1T \; \therefore

T \; < \; 60

Espero ter ajudado, caso persista alguma dúvida é só postar. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação Exponencial

Mensagempor Karina » Seg Mai 31, 2010 15:08

A resposta correta é a D. T>60
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Inequação Exponencial

Mensagempor Douglasm » Seg Mai 31, 2010 15:47

Perdão, é só corrigir o seguinte:

[-6 \; > \; -0,1T] . (-1) \; \therefore

6 \; < \; 0,1T \; \therefore

T \; > \; 60

Agora sim está correto.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)