• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Exponencial

Inequação Exponencial

Mensagempor Karina » Sáb Mai 29, 2010 17:31

A relação P=6400\left(1 - {2}^{-0,1T}\right) descreve o crescimento de uma população de microorganismos T dias após o instante
zero. O valor de P é superior a 6300 se, e somente se, T satisfazer a condição

a) 2<t<16
b) t<60
c) t<30
d) t>60
e) 32<t<64

Eu consegui resolver por substituição dos valores das respostas na inequação
mas isso demora muito, alguem consegue resolver essa inequação?
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Inequação Exponencial

Mensagempor Douglasm » Dom Mai 30, 2010 17:27

Olá Karina. Para resolver essa inequação, basta fazer o seguinte:

6400(1-2^{-0,1T})\; > \; 6300 \; \therefore

100 \; > \; 6400(2^{-0,1T}) \; \therefore

\frac{1}{64} \; > \; 2^{-0,1T} \; \therefore

2^{-6} \; > \; 2^{-0,1T} \; \therefore

-6 \; > \; -0,1T \; \therefore

T \; < \; 60

Espero ter ajudado, caso persista alguma dúvida é só postar. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação Exponencial

Mensagempor Karina » Seg Mai 31, 2010 15:08

A resposta correta é a D. T>60
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Inequação Exponencial

Mensagempor Douglasm » Seg Mai 31, 2010 15:47

Perdão, é só corrigir o seguinte:

[-6 \; > \; -0,1T] . (-1) \; \therefore

6 \; < \; 0,1T \; \therefore

T \; > \; 60

Agora sim está correto.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.