• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(MACK-SP) Função do 1º Grau

(MACK-SP) Função do 1º Grau

Mensagempor 13run0 » Qui Mai 27, 2010 17:54

Se f(x+1)=\frac{3x+5}{2x-1}, (x\neq -\frac{1}{2}), então o domínio da função f(x) é o conjunto formado pelos números reais x tais que:

Resposta: x\neq\frac{3}{2}

ele dá a função f(x+1). . . mas como eu encontro a função f(x) ??
13run0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Mai 27, 2010 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Edificações
Andamento: formado

Re: (MACK-SP) Função do 1º Grau

Mensagempor Neperiano » Qui Mai 27, 2010 18:35

Ola

Substitua o x por -1/2 depois de resolvido, diminua 1

Acredito ser isso
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: (MACK-SP) Função do 1º Grau

Mensagempor 13run0 » Qui Mai 27, 2010 23:54

Maligno, valeu por tentar me ajudar. . .
mas eu não consegui resolver a questão. . .

se vcou outra pessoa puder mostrar a resolução eu agradeço. . .
13run0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Mai 27, 2010 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Edificações
Andamento: formado

Re: (MACK-SP) Função do 1º Grau

Mensagempor Molina » Sex Mai 28, 2010 01:25

Boa noite.

Como f(x+1)=\frac{3x+5}{2x-1} temos que:

f(x+1-1)=\frac{3(x-1)+5}{2(x-1)-1}

f(x)=\frac{3x+2}{2x-3}

Agora você tem f(x). O que eu fiz foi subtrair 1 de x, para chegar em f((x+1)-1)=f(x+(1-1))=f(x+0)=f(x)

Como subtrai 1 no argumento, subtrai 1 também na lei de formação, e chegamos nesta resposta a cima.

Agora é só fazer o denominador diferente de 0 e achar a resposta de x.



Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: (MACK-SP) Função do 1º Grau

Mensagempor 13run0 » Sex Mai 28, 2010 14:15

Valeu mesmo Molina!
ótima explicação. . .
me ajudou bastante!!
13run0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Mai 27, 2010 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Edificações
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59