• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo

Logaritmo

Mensagempor JailsonJr » Sex Mai 21, 2010 05:11

(UE-PI) Se \sqrt[]{{9}^{p+1}}={3}^{\sqrt[]{2}} e {log}_{2}\left(q-1 \right)=\frac{1}{2} , então {p}^{2}+p.q+{q}^{2} é igual a:

Resp.: 7

-----------

Achei p=\sqrt[]{2}-2
q=\sqrt[]{2}+1

Mas, na hora de substituir em {p}^{2}+p.q+{q}^{2}, não deu o resultado...
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmo

Mensagempor Douglasm » Sex Mai 21, 2010 18:03

Olá Jaílson. Aqui você só não se atentou ao fato de que:

\sqrt{9^{p+1}} = 3^{\sqrt{2}} \; \therefore \; 3^{p+1} = 3^{\sqrt{2}} \; \therefore \; p = \sqrt{2} - 1

Agora com os valores corretos de p e q poderá achar a resposta. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmo

Mensagempor JailsonJr » Sáb Mai 22, 2010 04:39

Vlw, consegui !!, Não sei nem de onde eu tirei aquele -2 :lol:
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmo

Mensagempor jefferson0209 » Ter Set 22, 2015 17:33

alguem me ajuda ae?
1)sendo log2=u e log3=v,determine:
a)log12
b)log15

2)calcula:

log 81+ log625-log100
.. 3 . . 5
jefferson0209
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Ter Set 22, 2015 15:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: matematica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)