• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Desigualdade!

Desigualdade!

Mensagempor Questioner » Dom Mai 16, 2010 17:13

Olá,

Estou com uma dificuldade na seguinte desigualdade (muito tempo sem fazer exercícios dessa forma). Será que dá para dar uma luz?

-x < x² < 2x + 1

Eu consegui fazer algumas divisões e cheguei em:

0 < x < \frac{3x + 1}{(x+1)}

Gabarito é:
0 e 1+ \sqrt[]{2}
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Desigualdade!

Mensagempor Douglasm » Dom Mai 16, 2010 18:37

Façamos novamente por partes:

1ª condição:

-x < x^2 \: \therefore \: x^2 + x > 0 \: \therefore \: x(x+1) > 0 \: \therefore \: x > 0 \: ou \: x < -1

(Isso pode ser facilmente notado pelo gráfico da função. Como a concavidade desta é voltada para cima, os valores maiores que zero serão aqueles que não estarão entre as raízes.)

2ª condição:

x^2 < 2x + 1 \: \therefore \: x^2 - 2x - 1 < 0 \: \therefore \: 1 - \sqrt{2} < x < 1 + \sqrt{2}

(Aqui os valores da função menores que zero estarão entre as raízes.)

Unindo as duas condições:

0 < x < 1 + \sqrt{2}

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}