por Sandy26 » Ter Abr 27, 2010 14:35
A expressão
2V36 - 2V15 + 3V-(6^1 * 18 / 3*2^6)^-1
= 2.6 - 2V15 + 3V - (1/6 * 6*3 / 3 * 2^6) ^-1
= 14 - 2V15 + 3V - (1/2^6) ^-1
= 14 - 2V15 + (- 1/2^6)^-1/3
= 14 - 2V15 + ( - (2^6)^-1/3)
=14 - 2V15 + (-2^-2)
= 14- 2V15 + 4
= 18 - 2V15
-
Sandy26
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sex Abr 23, 2010 13:53
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: cursando
por Sandy26 » Qua Abr 28, 2010 06:28
A expressão não é assim!
Vou tentar explicar:
indice:3 raiz de -(6^1*18 dividir por 3*2^6) entre parentes, tudo elevado a ^-1
Espero k entendo
-
Sandy26
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sex Abr 23, 2010 13:53
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: cursando
por MarceloFantini » Qua Abr 28, 2010 18:54
É isso?
![\sqrt [3] { - (\frac {6 \cdot 18} {3 \cdot 2^6})^{-1} } \sqrt [3] { - (\frac {6 \cdot 18} {3 \cdot 2^6})^{-1} }](/latexrender/pictures/6761adb541965af54e19fa1228007c71.png)
Sandy,
aprenda LaTeX.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Sandy26 » Qui Abr 29, 2010 14:47
sim é isso!!!!
-
Sandy26
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sex Abr 23, 2010 13:53
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Simplificar
por victorleme » Qua Mai 04, 2011 20:06
- 4 Respostas
- 2343 Exibições
- Última mensagem por victorleme

Qui Mai 05, 2011 18:56
Polinômios
-
- Simplificar
por Danilo » Ter Ago 14, 2012 15:32
- 2 Respostas
- 1264 Exibições
- Última mensagem por Danilo

Qua Ago 15, 2012 02:38
Álgebra Elementar
-
- Simplificar
por mayconf » Sáb Set 22, 2012 14:02
- 4 Respostas
- 2080 Exibições
- Última mensagem por MarceloFantini

Sáb Set 22, 2012 17:57
Álgebra Linear
-
- Simplificar
por Thyago Quimica » Qui Mar 20, 2014 17:52
- 1 Respostas
- 1142 Exibições
- Última mensagem por natomi

Qui Mar 20, 2014 17:57
Funções
-
- simplificar equação
por sinuca147 » Qui Mai 21, 2009 03:11
- 2 Respostas
- 6882 Exibições
- Última mensagem por sinuca147

Qui Mai 21, 2009 15:12
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.