• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificar

Simplificar

Mensagempor Sandy26 » Ter Abr 27, 2010 14:35

A expressão

2V36 - 2V15 + 3V-(6^1 * 18 / 3*2^6)^-1

= 2.6 - 2V15 + 3V - (1/6 * 6*3 / 3 * 2^6) ^-1
= 14 - 2V15 + 3V - (1/2^6) ^-1
= 14 - 2V15 + (- 1/2^6)^-1/3
= 14 - 2V15 + ( - (2^6)^-1/3)
=14 - 2V15 + (-2^-2)
= 14- 2V15 + 4
= 18 - 2V15
Sandy26
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sex Abr 23, 2010 13:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Simplificar

Mensagempor MarceloFantini » Ter Abr 27, 2010 17:33

2 \sqrt {36} -2 \sqrt {15} +3 \sqrt { \frac {1} { - \frac{ \frac {1}{6} \cdot 18} {3 \cdot 2^6}}

Se aquele menos ali existir, a expressão não é real. A propósito, aprenda a editar suas mensagens com Latex, não é possível entender nem a questão nem sua resolução sem ele.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Simplificar

Mensagempor Sandy26 » Qua Abr 28, 2010 06:28

A expressão não é assim!
Vou tentar explicar:
indice:3 raiz de -(6^1*18 dividir por 3*2^6) entre parentes, tudo elevado a ^-1

Espero k entendo
Sandy26
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sex Abr 23, 2010 13:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Simplificar

Mensagempor MarceloFantini » Qua Abr 28, 2010 18:54

É isso? \sqrt [3] { - (\frac {6 \cdot 18} {3 \cdot 2^6})^{-1} }

Sandy, aprenda LaTeX.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Simplificar

Mensagempor Sandy26 » Qui Abr 29, 2010 14:47

sim é isso!!!!
Sandy26
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sex Abr 23, 2010 13:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Simplificar

Mensagempor MarceloFantini » Qui Abr 29, 2010 18:29

Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.