Na figura, as distâncias entre dois pontos horizontais consecutivos e as distâncias entre dois pontos verticais consecutivos são iguais a 1. A região comum ao triângulo e ao quadrado tem área:


Maligno escreveu:Ola
Eu naum vou responder, mas creio que para calcular a area do triangulo basta traçar outros triangulos ao lado, aonde há a linha reta para que possa saber o valor do lado, do quadrado é só multiplicar






usando geometria analítica. Veja só:
, sendo
(reta decrescente e
é o menor ângulo que a reta forma com a horizontal)
e
(paralelas aos lados direito e superior do quadrado, respectivamente.). Fazendo isso, podemos encontrar as medidas do pequeno triângulo que fica fora do triângulo que contém o quadrado:
e
:
e
:

= 

.








Douglasm escreveu:Olá Molina. Esse seu método é muito mais objetivo. Eu não tinha me tocado que podia afirmar que o lado de cima do triângulo menor era 1/2, assim seria bem mais rápido.
Até a próxima.


Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)