por Bruhh » Qui Abr 22, 2010 15:01
Alguém, por favor, me ajuda com os cálculos de limites?
Tenho, por exemplo, o limite abaixo:
Lim

x->-1
Se eu substituir -1 no denominador vou obter 0, então pelo método de Briot Rufini tento retirar a indeterminação, mas minha professora explicou que o último número deve zerar porém não é o que acontece:
-> primeiro repito o primeiro número para baixar o grau, depois multiplico 1 por -1 e somo com o -1 do x², que fica -2, depois o multiplico por -1 e somo com 2, o que vai resultar em 4, e não em zero como deveria ser!
x²-2x+4
Eu estou calculando errado ou último número pode ser qualquer número? O método do Rufini serve para baixar o grau de qualquer expressão?
Obrigada

-
Bruhh
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Seg Mar 01, 2010 14:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Eng. Química
- Andamento: cursando
por MarceloFantini » Qui Abr 22, 2010 17:29
Bruh, eu fiz a divisão no braço em cima e embaixo por

. e resultou que:


Então temos que

É prudente conferir minhas contas.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Bruhh » Qui Abr 22, 2010 20:40
Bom na minha apostila o resultado é

Eu observei que se substituir -1 no numerador o resultado é -4, só no denominador que zera, mas eu já tentei por divisão de polinomio e por Rufini mas eu não consigo chegar no resultado nunca.
Voce sabe me dizer se o método de Rufini serve para todo o tipo de equação?E se tem que ser 0 o último número?
Obrigada
-
Bruhh
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Seg Mar 01, 2010 14:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Eng. Química
- Andamento: cursando
por Douglasm » Qui Abr 22, 2010 21:57
Olá Bruhh. Eu fiz pelo Briot-Ruffini e deu certinho, veja só:
-1 é raiz tanto do numerador quanto do denominador:


Deste modo, sabemos que na fatoração de ambos os polinômios consta o fator

. Agora devemos aplicar o método de Briot-Ruffini (e sim, ele serve para abaixar o grau de qualquer polinômio):

- briotruffini.JPG (7.99 KiB) Exibido 9132 vezes
(N = numerador ; D = Denominador)
Simplificando, o algoritmo é composto dos seguintes passos:
1º - Colocar os coeficientes de

,

,

, etc. (sem esquecer das potências de
x que possuem coeficiente igual a zero)
2º - Determinar um divisor (uma raiz do polinômio, no nosso caso o
-1)
3º - Realizar as seguintes operações: Repetir o primeiro coeficiente na linha de baixo; Multiplicar o divisor por ele; Somar o resultado com o próximo coeficiente; Abaixar essa soma e repetir o processo até o final. (Por exemplo, a seqüencia de operações na divisão do numerador é: 1º. abaixar o 1 ; 2º.
-1 . 1 = -1 ; 3º.
-1 + 3 = 2 ; 4º.
-1 . 2 = -2 ; 5º.
-2 + (-1) = -3 ; 6º.
-1 . -3 = 3 ; 7º.
3 + (-3) = 0)
Os números em vermelho são os novos coeficientes do polinômio. O limite agora toma a forma:

=

Espero ter ajudado. Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo: Limites, Derivadas e Integrais] Cálculo de limites
por jeferson lopes » Ter Mar 26, 2013 08:49
- 2 Respostas
- 4914 Exibições
- Última mensagem por jeferson lopes

Ter Mar 26, 2013 11:52
Cálculo: Limites, Derivadas e Integrais
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4075 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 2 - Limites] Existência de Limites
por Piva » Seg Abr 16, 2012 11:29
- 0 Respostas
- 3004 Exibições
- Última mensagem por Piva

Seg Abr 16, 2012 11:29
Cálculo: Limites, Derivadas e Integrais
-
- cálculo de limites
por Hansegon » Seg Ago 25, 2008 11:29
- 2 Respostas
- 29060 Exibições
- Última mensagem por Guill

Dom Abr 08, 2012 16:03
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de limites
por Emanuel_27 » Sáb Nov 01, 2008 01:57
- 3 Respostas
- 6683 Exibições
- Última mensagem por Molina

Qui Abr 09, 2009 22:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.