• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Grafico de limites e assintotas

Grafico de limites e assintotas

Mensagempor Bruhh » Qui Abr 15, 2010 15:43

Olá, Boa Tarde!
Tenho a seguinte função para montar o gráfico e determinar as assíntotas horizontal e vertical:


f(x)=
|x|, se -4<x\leq0
4, se 0<x<\frac{1}{4}
2, se x=\frac{1}{4}
\frac{1}{4}, se \frac{1}{4}<x\leq4


Então, como é que eu monto o gráfico dessa função??
Eu sei que para calcular a assíntota horizontal, x deve tender infinito ou infinito negativo, mas onde eu calculo isso?
Também sei que para calcular a assíntota vertical, x deve tender a um número que zere o denominador, no caso de uma fração.
Mas eu não sei nem por onde começo, como monto o gráfico ou como calculo as assíntotas.Alguém, por favor ,poderia me ajudar?
-
Obrigada desde já!
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Grafico de limites e assintotas

Mensagempor MarceloFantini » Qui Abr 15, 2010 17:47

Ainda não tentei resolver a questão mas lembre-se da definição de assíntota: é a reta que representa o valor que a função se aproxima cada vez mais, sem nunca assumir. Talvez ajude. Tente plotar o gráfico também, não parece difícil, e ter alguma dica geométrica.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Grafico de limites e assintotas

Mensagempor Bruhh » Sex Abr 16, 2010 20:19

Eu já li e reli várias vezes a função mas não consigo entender.
Como eu faço para saber onde esta a assíntota se não existem contas, só valores?Como vou calcular essas assíntotas??

Por favor, me ajuda, é muitooooooooo importante!

Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Grafico de limites e assintotas

Mensagempor Marcampucio » Sex Abr 16, 2010 21:07

Essa função é composta por vários segmentos de retas. Não tem assintotas.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.