por Bruhh » Qui Abr 15, 2010 15:43
Olá, Boa Tarde!
Tenho a seguinte função para montar o gráfico e determinar as assíntotas horizontal e vertical:
f(x)=
|x|, se

4, se

2, se


, se

Então, como é que eu monto o gráfico dessa função??
Eu sei que para calcular a assíntota horizontal, x deve tender infinito ou infinito negativo, mas onde eu calculo isso?
Também sei que para calcular a assíntota vertical, x deve tender a um número que zere o denominador, no caso de uma fração.
Mas eu não sei nem por onde começo, como monto o gráfico ou como calculo as assíntotas.Alguém, por favor ,poderia me ajudar?
-
Obrigada desde já!
-
Bruhh
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Seg Mar 01, 2010 14:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Eng. Química
- Andamento: cursando
por MarceloFantini » Qui Abr 15, 2010 17:47
Ainda não tentei resolver a questão mas lembre-se da definição de assíntota: é a reta que representa o valor que a função se aproxima cada vez mais, sem nunca assumir. Talvez ajude. Tente plotar o gráfico também, não parece difícil, e ter alguma dica geométrica.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Bruhh » Sex Abr 16, 2010 20:19
Eu já li e reli várias vezes a função mas não consigo entender.
Como eu faço para saber onde esta a assíntota se não existem contas, só valores?Como vou calcular essas assíntotas??
Por favor, me ajuda, é muitooooooooo importante!
Obrigada
-
Bruhh
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Seg Mar 01, 2010 14:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Eng. Química
- Andamento: cursando
por Marcampucio » Sex Abr 16, 2010 21:07
Essa função é composta por vários segmentos de retas. Não tem assintotas.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Iniciação (Gráfico - assíntotas)
por ViniciusAlmeida » Seg Fev 09, 2015 12:35
- 0 Respostas
- 880 Exibições
- Última mensagem por ViniciusAlmeida

Seg Fev 09, 2015 12:35
Cálculo: Limites, Derivadas e Integrais
-
- Encontrando assíntotas... gráfico
por Talitafreire » Qui Jul 09, 2009 17:29
- 2 Respostas
- 2498 Exibições
- Última mensagem por Talitafreire

Qui Jul 09, 2009 18:03
Cálculo: Limites, Derivadas e Integrais
-
- Limites(assíntotas)
por Luciano Dias » Dom Jan 03, 2010 12:37
- 3 Respostas
- 7433 Exibições
- Última mensagem por Molina

Dom Jan 03, 2010 23:22
Cálculo: Limites, Derivadas e Integrais
-
- Limites(assíntotas)correção
por Luciano Dias » Seg Jan 04, 2010 14:05
- 5 Respostas
- 5050 Exibições
- Última mensagem por Marcampucio

Qua Jan 06, 2010 20:16
Cálculo: Limites, Derivadas e Integrais
-
- LIMITES ( ASSINTOTAS VERTICAIS)
por belinha26 » Dom Set 29, 2013 17:16
- 1 Respostas
- 1502 Exibições
- Última mensagem por young_jedi

Dom Set 29, 2013 19:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.