• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Comissão de 3

Comissão de 3

Mensagempor estudandoMat » Qui Abr 08, 2010 17:15

Se temos um numero de alunos em um curso:
Noturno:
homens = 2
mulheres = 4
Diurno:
homens = 5
mulheres = 9

Três alunos do curso são escolhidos ao acaso para formarem a comissão de formatura. A
probabilidade de que a comissão seja composta por duas pessoas do noturno e uma do diurno é de:

Resposta: 7/38
----------------------------
Resolvendo:
Montei assim:
probabilidade de 6 de 20 , depois 5 de 19 , 14 (diurno) de 18 possiveis.
\frac{6}{20} . \frac{5}{19} . \frac{14}{18} = \frac{7}{114}

Mas esta errado e n consigo encontrar o erro.
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Comissão de 3

Mensagempor MarceloFantini » Qui Abr 08, 2010 20:00

Não vejo erro nos seus cálculos e nem no raciocínio. É possível que o gabarito esteja errado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Comissão de 3

Mensagempor rassis46 » Sex Abr 16, 2010 11:34

A resposta 7/38 está correcta e confirmada por simulação de Monte-Carlo.
rassis46
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 15, 2010 19:35
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Doutoramento em Engenharia mecânica
Andamento: formado

Re: Comissão de 3

Mensagempor estudandoMat » Sex Abr 16, 2010 14:06

e como seria?
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Comissão de 3

Mensagempor rassis46 » Sáb Abr 17, 2010 22:11

Correcção:

Utilizando simulação de Monte Carlo:

A resposta 0,18421 está correcta se houver (teoricamente) reposição da amostra - o que não se coaduna com o enunciado do caso.
A resposta 6/20 x 5/19 x 14/18 = 0,0614 (ou por qualquer outra ordem) está correcta se não houver reposição da amostra - o que está desta vez de acordo com o enunciado.

A minha anterior afirmação foi precipitada. Peço desculpa.
rassis46
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 15, 2010 19:35
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Doutoramento em Engenharia mecânica
Andamento: formado

Re: Comissão de 3

Mensagempor Lucio Carvalho » Sáb Abr 17, 2010 23:20

Olá estudandoMat,
Concordo com a resposta 7/38.
Na contagem dos casos favoráveis e casos possíveis temos que usar "Combinações" e não "Arranjos sem repetição" porque na formação das comissões a ordem não interessa, isto é, falar "José, Maria e Pedro " é o mesmo que falar "Maria, Pedro e José. Assim,

\frac{(6C2)\times(14C1)}{20C3}=\frac{\frac{6\times5}{2!}\times14}{\frac{20\times19\times18}{3!}}=\frac{\frac{6\times5\times14}{2}}{\frac{20\times19\times18}{3\times2\times1}}=\frac{210}{1140}=\frac{7}{38}

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.