por guijermous » Sáb Abr 10, 2010 10:02
(UFSCar-SP-2009) A parábola determinada pela função f: R->R tal que f(x) = ax^2+bx+c, com a != 0 (diferente de 0), tem vértice nas coordenadas (4,2). Se o ponto de coordenadas (2,0) pertence ao gráfico desta função, então o produto abc é igual a:
Eu não sei a resposta pq foi de um simulado que eu fiz, e essa questão foi a única que não consegui fazer! Poderiam me ajudar?
Abras
-
guijermous
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Seg Fev 15, 2010 14:38
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Inf. Industrial
- Andamento: formado
por MarceloFantini » Sáb Abr 10, 2010 14:41
Note que o ponto (2,0) é raiz da equação. Agora lembre que a abscissa do vértice é a média aritmética das raízes, então a outra raíz é (6,0). A função f(x) então será:

Substitua o valor do vértice, encontre a, e depois ache a equação e multiplique os coeficientes.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por guijermous » Sáb Abr 10, 2010 15:12
não entendi como vc achou a outra raiz!
poderia explicar mais detalhadamente?
obrigado
-
guijermous
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Seg Fev 15, 2010 14:38
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Inf. Industrial
- Andamento: formado
por Molina » Sáb Abr 10, 2010 16:27
guijermous escreveu:não entendi como vc achou a outra raiz!
poderia explicar mais detalhadamente?
obrigado
Boa tarde.
Você concorda que o ponto (2,0) é uma das raízes da equação, correto? E que existe outro ponto do tipo (x,0) que também é raíz da equação. Usando a outra informação do enunciado, que diz que o vértice é o ponto (4,2), temos que esse ponto, se traçarmos uma reta vertical por ele, é o que dá a simetria da equação. Esta reta cortará o ponto x=4. Ou seja, de 2 a 4, tem-se 2 unidades, esta será a mesma unidade que teremos que considerar para a direita do ponto x=4. Ou seja, a outra raiz da equação é (6,0).
Fiz um desenho pra complementar a explicação do Fantini:

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função quadrática
por Ananda » Sex Mar 28, 2008 16:00
- 6 Respostas
- 8943 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 21:25
Funções
-
- Função quadratica
por Aline » Qui Jun 18, 2009 14:22
- 2 Respostas
- 2504 Exibições
- Última mensagem por Cleyson007

Sex Jun 19, 2009 10:00
Funções
-
- Função Quadratica
por Aline » Qui Jun 18, 2009 14:37
- 1 Respostas
- 1909 Exibições
- Última mensagem por Marcampucio

Qui Jun 18, 2009 16:45
Funções
-
- Função Quadratica
por Aline » Sáb Jun 20, 2009 18:23
- 1 Respostas
- 1995 Exibições
- Última mensagem por Molina

Dom Jun 21, 2009 20:28
Funções
-
- Função Quadrática
por geriane » Seg Abr 12, 2010 16:14
- 0 Respostas
- 1265 Exibições
- Última mensagem por geriane

Seg Abr 12, 2010 16:14
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.