• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Eq. 2 grau!

Eq. 2 grau!

Mensagempor CaAtr » Qui Abr 08, 2010 17:46

Resolva em R:
\frac{x+1}{{x}^{2}-3x+2}+ \frac{x-1}{{x}^{2}-6x+8}= 0

Resposta : s = \left[\frac{-1}{2},3 \right]

Poderiam me dar uma dica..eu tirei mmc e ficou assim: {x}^{2}+ 2x +4, mas nem sei se esta certo!
Desde de ja obrigada!!
CaAtr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mar 09, 2010 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Eq. 2 grau!

Mensagempor Molina » Qui Abr 08, 2010 17:59

CaAtr escreveu:Resolva em R:
\frac{x+1}{{x}^{2}-3x+2}+ \frac{x-1}{{x}^{2}-6x+8}= 0

Resposta : s = \left[\frac{-1}{2},3 \right]

Poderiam me dar uma dica..eu tirei mmc e ficou assim: {x}^{2}+ 2x +4, mas nem sei se esta certo!
Desde de ja obrigada!!

Boa tarde.

Você tem a opção de passar uma das frações por outro lado e multiplicar cruzado, evitando assim o mmc. Caso queira fazer o mmc eu fiz multiplicando ambos os denominadores:

\frac{x+1}{{x}^{2}-3x+2}+ \frac{x-1}{{x}^{2}-6x+8}= 0

\frac{(x+1)*({x}^{2}-6x+8)+(x-1)*({x}^{2}-3x+2)}{({x}^{2}-3x+2)*({x}^{2}-6x+8)}= 0

(x+1)*({x}^{2}-6x+8)+(x-1)*({x}^{2}-3x+2)= 0

x^3-6x^2+8x+x^2-6x+8+x^3-3x^2+2x-x^2+3x-2=0

2x^3 -9x^2 + 7x +6 =0

Agora é só achar as raízes. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Eq. 2 grau!

Mensagempor CaAtr » Sex Abr 09, 2010 15:54

Sim sim!! Obrigada!! Ja deu certo ja!! :y:
CaAtr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mar 09, 2010 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59