por geriane » Sáb Abr 03, 2010 10:39
Por favor me ajude, já fiz algumas tentativas não consegui obter o resultado.
Questão
Uma esfera de 2cm de raio é colocada no interior de um vaso cônico, conforme a figura a seguir. O vaso tem 12cm de altura e sua abertura é um circunferência com 5cm de raio. Nessas condições, a menor distância (d) entre a esfera e o vértice do cone é? a resposta é 3,2cm
tentei resolver pelo método da semelhança do triângulo retangulo, e depois aplicar o teorema de pitágoras, mas naum obti o resultado. Se puderem me ajudar ficarei mto agradecida.
desde já muito obrigada!
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
por davi_11 » Sáb Abr 03, 2010 13:28
Cheguei em 2,8
Se sua resposta também foi esta talvez o erro esteja na resposta dada.
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
-
davi_11
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 02, 2010 22:47
- Localização: Leme - SP
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso técnico em eletrotécnica
- Andamento: formado
por geriane » Sáb Abr 03, 2010 20:57
Obrigada, consegui chegar ao resultado do problema 3,2cm. Mas muito obrigada pela sua atenção. Sei que vou precisar de muito mais. Obrigada. Se precisar estarei aqui.
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
por davi_11 » Sáb Abr 03, 2010 23:28
Agora fiquei curioso, como foi a sua resolução?
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
-
davi_11
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 02, 2010 22:47
- Localização: Leme - SP
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso técnico em eletrotécnica
- Andamento: formado
por geriane » Dom Abr 04, 2010 10:29
Eu fiz a semelhança do triangulo e o teorema de Pitágoras. É q na hora eu estava colocando o numero errado, aí obvio o resultado saia errado.
Pela semelhança o deu x=4,8.
Pelo teorema, q cai numa equação de 2º grau colokei na hipotenusa (x+2), em um cateto=2 e o outro cateto=4,8. Aí deu o resultado 3,2cm. Bjos
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria espacial
por Gir » Seg Jul 27, 2009 11:46
- 3 Respostas
- 11569 Exibições
- Última mensagem por Molina

Ter Jul 28, 2009 15:21
Problemas do Cotidiano
-
- Geometria espacial
por nathy vieira » Qua Out 07, 2009 22:37
- 2 Respostas
- 2708 Exibições
- Última mensagem por nathy vieira

Qua Out 07, 2009 23:03
Geometria Espacial
-
- geometria espacial
por nathy vieira » Qua Out 07, 2009 23:18
- 4 Respostas
- 5906 Exibições
- Última mensagem por nathy vieira

Qui Out 08, 2009 18:37
Geometria Espacial
-
- Geometria espacial
por crixprof » Qui Out 15, 2009 10:40
- 2 Respostas
- 3008 Exibições
- Última mensagem por crixprof

Sex Out 16, 2009 18:27
Geometria Espacial
-
- Geometria espacial
por nayara michele » Ter Set 27, 2011 17:43
- 1 Respostas
- 2269 Exibições
- Última mensagem por Neperiano

Ter Set 27, 2011 18:02
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.