• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Ter Ago 24, 2021 10:48

(ITA-1965)p(x) é um polinomio de 5° grau e 1,3 e 5 sao raizes da equaçao p(x)=0.se Q(x)=x^2-4x+3 entao
a fraçao p(x)/Q(x) é

a)um polinomio
b)um polinomio de 2°grau
c)negativa para raizes para valores de x compreendidos entre as raizes de Q(x)=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Ter Ago 24, 2021 11:19

soluçao
pelos dados do problema teremos

p(x)=(x-1).(x-3).(x-5)r(x),onde r(x) é um polinomio de 2° grau
Q(x)=x^2-4x+3=0...teremos x=1,x=3 raizes de Q(x)=0...logo

p(x)/Q(x)=((x-1)(x-3)(x-5)r(x))/((x-1)(x-3))=(x-5).r(x) que é um polinomio de 3°...

logo a opçao b) esta descartada...

entre x=1 e x=3,teremos

p(x)/Q(x)=(1-5).r(x)=-4.r(x),r(x) de 2°...r(x)=ax^2+bx+c...para x=1,teremos

p(1)/Q(1)=-4.(a.(1)^2+b.(1)+c)=-4(a+b+c)...
fazendo o mesmo para x=3...p(3)/Q(3)=(3-5)r(x)=-2(9a+3b+c)...como nao temos como determinar a,b,c em funçao dos dados do problema,nao temos como afirmar a opçao c)...
portanto o que podemos afirmar que p(x)/Q(x) é um polinomio de 3°...fica a opçao a) como a mais viavel...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.