por TEKA » Qui Mar 25, 2010 18:48
ola
queria saber a parte teórica da pa e da pg. vcs conhecem algum site que possa pegar?
ou senão me ajudar em como resolver, uma pg, simples, pois ele dá a sequencia....2187, 729 243 e 81.
o próximo termo é?....
não me recordo a fórmula, nem se é an= a1.q n-1...onde o an é 4, ou é o 5 elemento?
a1 seria o 2187?
desculpe mas é que já faz tempo que estudei e to tentando ou vestibular......
valew
-
TEKA
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Mar 25, 2010 18:24
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: g projetos
- Andamento: formado
por Cleyson007 » Qui Mar 25, 2010 19:40
Boa noite Teka!
Vão algumas dicas:
Fórmula do termo geral:

Teka, o

é o quinto termo que você procura.
O número 2187 é o primeiro termo

A letra q é a razão dessa P.G

Note que o valor de q é um termo dividido por quem o antecede.
A letra n é o número de termos, logo:

Agora, ficou mais fácil! Tente você mesma resolver
Comente qualquer dúvida.
Link para conferir mais sobre a matéria:
http://www.brasilescola.com/matematica/ ... etrica.htmAté mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por TEKA » Qui Mar 25, 2010 19:51
OBRIGADAAAO MESMO.
EU fiz assim,
a5 = a4.q
o q = [a2/a1] = no caso deu 1/3
a4 = 81
ai substitui na fórmula a5 = 81x1/3 = 27
super obrigada mesmo assim.
-
TEKA
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Mar 25, 2010 18:24
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: g projetos
- Andamento: formado
por Cleyson007 » Qui Mar 25, 2010 20:03
Boa noite Teka!
É isso mesmo!

Resolvendo,

Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda para resolver equação para calcular velocidade média
por marcorrer » Sex Fev 24, 2012 13:10
- 0 Respostas
- 3493 Exibições
- Última mensagem por marcorrer

Sex Fev 24, 2012 13:10
Sistemas de Equações
-
- onde a funcao tem concavidade para cima e para baixo?
por tumiattibrz » Sáb Jun 04, 2011 01:00
- 4 Respostas
- 4392 Exibições
- Última mensagem por Fabio Cabral

Seg Jun 06, 2011 23:54
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Funciona para produto mas não para quociente?
por Matheus Lacombe O » Ter Dez 11, 2012 23:46
- 1 Respostas
- 2072 Exibições
- Última mensagem por Russman

Qua Dez 12, 2012 01:39
Cálculo: Limites, Derivadas e Integrais
-
- teoria de conjunto
por rafaelmtmtc » Sáb Abr 18, 2009 20:45
- 4 Respostas
- 3118 Exibições
- Última mensagem por rafaelmtmtc

Dom Abr 19, 2009 12:47
Equações
-
- (ESTATÍSTICA ) Teoria
por Roberta » Ter Ago 11, 2009 23:18
- 4 Respostas
- 4688 Exibições
- Última mensagem por Roberta

Qui Ago 13, 2009 15:40
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.