• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TEORIA PA E PG... para relelmbrar

TEORIA PA E PG... para relelmbrar

Mensagempor TEKA » Qui Mar 25, 2010 18:48

ola
queria saber a parte teórica da pa e da pg. vcs conhecem algum site que possa pegar?
ou senão me ajudar em como resolver, uma pg, simples, pois ele dá a sequencia....2187, 729 243 e 81.
o próximo termo é?....
não me recordo a fórmula, nem se é an= a1.q n-1...onde o an é 4, ou é o 5 elemento?
a1 seria o 2187?
desculpe mas é que já faz tempo que estudei e to tentando ou vestibular......
valew
TEKA
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 25, 2010 18:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: g projetos
Andamento: formado

Re: TEORIA PA E PG... para relelmbrar

Mensagempor Cleyson007 » Qui Mar 25, 2010 19:40

Boa noite Teka!

Vão algumas dicas:

Fórmula do termo geral:

{a}_{n}={a}_{1}.{q}^{n-1}

Teka, o {a}_{n} é o quinto termo que você procura.

O número 2187 é o primeiro termo {a}_{1}

A letra q é a razão dessa P.G

q=\frac{{a}_{2}}{{a}_{1}}

Note que o valor de q é um termo dividido por quem o antecede.

A letra n é o número de termos, logo: n=5

Agora, ficou mais fácil! Tente você mesma resolver :y:

Comente qualquer dúvida.

Link para conferir mais sobre a matéria: http://www.brasilescola.com/matematica/ ... etrica.htm

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: TEORIA PA E PG... para relelmbrar

Mensagempor TEKA » Qui Mar 25, 2010 19:51

OBRIGADAAAO MESMO.
EU fiz assim,
a5 = a4.q
o q = [a2/a1] = no caso deu 1/3
a4 = 81
ai substitui na fórmula a5 = 81x1/3 = 27

super obrigada mesmo assim.
TEKA
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 25, 2010 18:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: g projetos
Andamento: formado

Re: TEORIA PA E PG... para relelmbrar

Mensagempor Cleyson007 » Qui Mar 25, 2010 20:03

Boa noite Teka!

É isso mesmo!

{a}_{5}=2187\left(\frac{1}{3} \right)^4

Resolvendo, {a}_{5}=27

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?