por Gebe » Sex Set 28, 2018 23:01
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Seg Out 15, 2018 17:18
Olá só passando por aqui para agradecer toda ajuda que vc tem me dado nos exercícios e desejar um Feliz dia dos professores!! Segue anexo um cálculo especial para vc ,meu professor de matemática aqui no fórum.Obrigado por tudo mesmo!!!Abraços!!
- Anexos
-

-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Seg Out 15, 2018 22:26
Haha gostei! Obrigado por lembrar, é sempre bom poder compartilhar o conhecimento, mais ainda quando há reconhecimento. Bons estudos!

-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Seg Out 15, 2018 22:30
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Sex Out 19, 2018 17:08
Olá vc poderia me ajudar a resolver estes problemas?Como faço este cálculo de parametrização de curvas?
4-Obtenha uma parametrização para a curva de equação geral

Segue possiveis respostas no anexo,mas gostaria de saber como é feito este cálculo.
3-Qual é a melhor representação geométrica do domínio da função ?(Como faço para representar geometricamente o dominio desta função?)
![f(x,y)=\sqrt[2]{y-{x}^{2}} f(x,y)=\sqrt[2]{y-{x}^{2}}](/latexrender/pictures/8af62dc12323ad7dbd37b8bdcad34037.png)
Obrigado
- Anexos
-

-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Sex Out 19, 2018 17:24
Se vc puder dar uma olhada nestes outros exercícios ,eu fico muito agradecida!!
- Anexos
-

-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Sáb Out 20, 2018 00:56
Sobre as 3 questões (ultima postagem):
1)
Se formos determinar as superfícies de nível neste caso teremos planos no R³.
Lembrando a equação geral do plano:

Podemos ver isso achando algumas destas superfícies, veja:

Como podemos ver estas superfícies tem formulação semelhante a eq. geral do plano.
2)
A equação geral de elipses é:

, sendo "a" a ordenada e "b" a abscissa.
O enunciado pede a curva de nivel 4, portanto teremos:

Logo elipse com ordenada 4 e abscissa 3 (Letra E).
3) Nessa não entendi o que está escrito no enunciado "...conjunto dos pontos em que ? ...".
Mas o grafico desta função lembra uma cela de cavalo, pode ver no link abaixo.
https://www.google.com/search?q=x%5E2-y%5E2&client=firefox-b&source=lnms&sa=X&ved=0ahUKEwiMw-W38JPeAhUBgpAKHWqEAxAQ_AUICSgA&biw=1366&bih=650&dpr=1Sobre a outra postagem:
4)
Pela equação é possível identifica-la como uma elipse.
Podemos "arrumar" a equação da seguinte forma:
![\\
9x^2+5y^2=1\\
\\
\frac{x^2}{\frac{1}{3^2}}+\frac{y^2}{\frac{1}{\sqrt[]{5}^2}}=1\\
\\
\left(\frac{x}{\frac{1}{3}} \right)^2+\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)^2=1\\
\\ \\
9x^2+5y^2=1\\
\\
\frac{x^2}{\frac{1}{3^2}}+\frac{y^2}{\frac{1}{\sqrt[]{5}^2}}=1\\
\\
\left(\frac{x}{\frac{1}{3}} \right)^2+\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)^2=1\\
\\](/latexrender/pictures/20ed23358145249fc83094d2baaa0475.png)
Se fizermos a troca:
![\\
A^2=\left(\frac{x}{\frac{1}{3}} \right)^2\\
B^2 =\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)^2
\\ \\
A^2=\left(\frac{x}{\frac{1}{3}} \right)^2\\
B^2 =\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)^2
\\](/latexrender/pictures/3caf55b1054e4777fd6e8a1bb38c661f.png)
Ficamos com A² + B² = 1
Podemos ver a semelhança entre essa formulação e a identidade trigonométrica cos²t + sen²t = 1.
Vamos então "forçar" esta semelhança:
![\\
A^2 = cos^2t\\
A = cos\;t\\
\left(\frac{x}{\frac{1}{3}} \right)=cos\;t\\
\\
x = \frac{1}{3}cos\;t\\
\\
\\
B^2 = sen^2t\\
B = sen\;t\\
\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)=sen\;t\\
\\
y = \frac{1}{\sqrt[]{5}}sen\;t\\ \\
A^2 = cos^2t\\
A = cos\;t\\
\left(\frac{x}{\frac{1}{3}} \right)=cos\;t\\
\\
x = \frac{1}{3}cos\;t\\
\\
\\
B^2 = sen^2t\\
B = sen\;t\\
\left(\frac{y}{\frac{1}{\sqrt[]{5}}} \right)=sen\;t\\
\\
y = \frac{1}{\sqrt[]{5}}sen\;t\\](/latexrender/pictures/655f18a5d5496770aca2866512d6ff38.png)
Resp:
![\gamma(t) = \left(\frac{1}{3}cos\;t\;,\;\frac{\sqrt[]{5}}{5}sen\;t \right) \gamma(t) = \left(\frac{1}{3}cos\;t\;,\;\frac{\sqrt[]{5}}{5}sen\;t \right)](/latexrender/pictures/33fdf4861c71943c19d768a4e85c89ad.png)
3)
Precisamos lembrar que nas funções reais só podemos ter valores maiores ou iguais a zero, logo:

Como podemos ver o domínio da função f(x,y) está acima da parábola y=x².
Como a imagem da função está no R³ e não temos restrições para z, o domínio será então uma "calha" formada por parábolas y=x² ao longo do eixo z.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Sáb Out 20, 2018 23:44
Um super muito obrigado.Quanto ao exercício que vc não entendeu segue aqui a pergunta:
Considere a função

. Sobre o conjunto dos pontos em que vale , é correto afirmar:
a-é um par de retas que passam pela origem
b-É uma circunferência de centro na origem.
c-Nenhuma das alternativas.
d-É formado por exatamente uma reta.
e-É formado por um único ponto.
Como vc me mostrou no gráfico trata-se de uma hiperbole então a resposta correta aqui seria a letra a?
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Dom Out 21, 2018 01:03
Agora me pego, realmente não sei o que o enunciado quer dizer com isso, parece que está falando do dominio da função, mas nesse caso a resposta seria "nenhuma das altern", ja que a função está definida para todo R² (todo x e y).
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Dom Out 21, 2018 16:34
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Seg Out 22, 2018 00:07
Olá estou com uma dúvida:Neste exercício da parametrização para a curva 9x^2+5y^2=1 a resposta não seria (nenhuma das alternativas)porque o valor final é
![\frac{1}{3}cos(t),\frac{1}{\sqrt[]{5}} \frac{1}{3}cos(t),\frac{1}{\sqrt[]{5}}](/latexrender/pictures/75bc11fbba7efd7b60797a155deecf34.png)
? (segue anexo o exercício)
- Anexos
-

-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Seg Out 22, 2018 01:02
Os dois resultados são idênticos, se multiplicar o numerador e o denominador por
![\sqrt[]{5} \sqrt[]{5}](/latexrender/pictures/0be1c4ad0f7708e4012e708b953ffd6c.png)
chega-se no formato da alternativa.
![\\
\frac{1}{\sqrt[]{5}}sent\\
\\
\frac{1}{\sqrt[]{5}}sent*\frac{\sqrt[]{5}}{\sqrt[]{5}}\\
\\
\frac{\sqrt[]{5}}{\left(\sqrt[]{5} \right)^2}sent\\
\\
\frac{\sqrt[]{5}}{5}sent \\
\frac{1}{\sqrt[]{5}}sent\\
\\
\frac{1}{\sqrt[]{5}}sent*\frac{\sqrt[]{5}}{\sqrt[]{5}}\\
\\
\frac{\sqrt[]{5}}{\left(\sqrt[]{5} \right)^2}sent\\
\\
\frac{\sqrt[]{5}}{5}sent](/latexrender/pictures/bcc68a0619e8c851374465ab64d2bec3.png)
Aproveitando, tem só um detalhe que falta no gabarito, o intervalo do parâmetro.
Perceba que para formar a elipse o parâmetro "t" deve estar em um intervalo de 2Pi.
Menos que isso não formamos a elipse e mais que isso começamos a sobrescrever a elipse.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Ter Out 23, 2018 00:12
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Qua Out 24, 2018 22:53
Olá vc poderia me ajudar com estes problemas de duas variáveis?Segue anexo as fotos (onde coloquei o x é a resposta mas acho que está errada).Obrigada
- Anexos
-

-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Qua Out 24, 2018 22:54
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Qua Out 24, 2018 22:57
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Qui Out 25, 2018 04:15
Continuidade/Limites com multiplas variaveis pode ser consideravelmente mais complicado. Por exemplo, não temos a facilidade da regra de l'Hopital.
Por esse motivo, temos dois tipos comuns de questões, um no qual temos que primeiro simplificar a função de alguma forma e outra onde tentamos mostrar que o limite não existe.
Lembrando: para que seja continua em (2,2), f(2,2) = lim[2,2] f(x,y), ou seja:

Se fizermos a simples substituição dos valores dados (2,2), temos uma indeterminação 0/0.
Nesta questão (6) temos um exemplo de questão que a simplicação pode ser feita.
Podemos tentar dividir o polinomio do denominador pelo polinomio do numerador, já que o denominador tem ordem maior.
Essa divisão dará como resultado:

Perceba que agora a indeterminação não existe mais e o limite vale 1/12. (Nenhuma das alternativas).
Quanto as questões 4 e 5. Não acho que as restrições no dominio tenham efeito na resposta.

Resp: Nenhuma das alternativas
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Qui Out 25, 2018 13:55
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Maisa_Rany » Ter Nov 06, 2018 21:13
Boa noite!
Como ficou a resposta final?
Obrigada!
-
Maisa_Rany
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 25, 2018 20:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
por ezidia51 » Seg Nov 26, 2018 09:23
Bom dia!!Você poderia dar uma olhada nestes exercícios que eu fiz de cálculo 2.Tenho dúvidas nas questões 1 e 3.Se você puder me ajudar ficarei muito agradecida.Obrigado Ezidia
- Anexos
-

-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Seg Nov 26, 2018 09:25
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por ezidia51 » Seg Nov 26, 2018 09:29
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Qua Nov 28, 2018 16:15
1) certa.
O solido é este -->
https://academo.org/demos/3d-surface-plotter/?expression=2*x*y&xRange=1%2C4&yRange=0%2C2&resolution=252)Errada.
A area certa é esta:

- fd.png (4.99 KiB) Exibido 47026 vezes
Assim, quando fazemos a troca das variaveis fica:
x ? y ? 1
0 ? x ? 1
Letra C
3) certa, Letra C
A area é esta:

- Sem título.png (5.5 KiB) Exibido 47026 vezes
4)Errada
Aqui tu considerou apenas metade da area, veja:

- 4.png (6.48 KiB) Exibido 47026 vezes
Logo teremos:

5) certa
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Qua Nov 28, 2018 20:35
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Qui Nov 29, 2018 18:37
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por dark_slack » Qui Dez 13, 2018 22:59
Boa noite fórum, tenho um problema de derivada parcial que não consigo resolver e peço a atenção de vocês para me ajudarem.

, descobrir a tangente que intercepta f(x, y) com y = 2 no ponto (1, 2, -3).
-
dark_slack
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Dez 13, 2018 19:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por ezidia51 » Seg Dez 24, 2018 16:34
Olá Gebe!!
Hoje não estou aqui para pedir nenhuma ajuda matemática ,mas sim para agradecer por toda ajuda que você tem me dado nos exercícios que tenho que estudar!!Estou fazendo Licenciatura em Matemática e felizmente consegui passar na prova de cálculo 2 .Graças a sua ajuda e muito estudo, consegui vencer mais uma etapa. Muito obrigado mesmo.Nesta data especial,desejo a você e a sua família um super feliz Natal e um Ano Novo repleto de realizações!Feliz 2019!!!

- Anexos
-

-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Ter Dez 25, 2018 17:06
HoHoHo Feliz Natal!
Obrigado pela mensagem.
Desejo a ti e a tua família o mesmo.

-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Ter Dez 25, 2018 19:06
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- problema basico de fisica usando derivadas
por iksin » Ter Set 11, 2018 16:29
- 1 Respostas
- 7181 Exibições
- Última mensagem por Gebe

Ter Set 11, 2018 17:38
Cálculo: Limites, Derivadas e Integrais
-
- Maximo e minimo usando derivadas parciais
por duduxo81 » Seg Nov 27, 2017 19:55
- 0 Respostas
- 4370 Exibições
- Última mensagem por duduxo81

Seg Nov 27, 2017 19:55
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - Problemas
por cassiog » Ter Mai 18, 2010 18:48
- 0 Respostas
- 4549 Exibições
- Última mensagem por cassiog

Ter Mai 18, 2010 18:48
Cálculo: Limites, Derivadas e Integrais
-
- Problemas de derivadas
por paolaads » Seg Nov 07, 2011 21:34
- 7 Respostas
- 11603 Exibições
- Última mensagem por LuizAquino

Sáb Dez 03, 2011 14:37
Cálculo: Limites, Derivadas e Integrais
-
- Intergral da Sec(x) dx usando tg(x/2)=Z
por rycherr » Ter Mai 08, 2012 01:32
- 3 Respostas
- 3516 Exibições
- Última mensagem por LuizAquino

Ter Mai 08, 2012 17:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.