• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indeterminação - Limite

Indeterminação - Limite

Mensagempor Paloma » Ter Mar 16, 2010 21:06

minha dificuldade não é em limites propriamente, mas na fatoração de polinômios, quando tendem a zero, ou acabam em uma indeterinação \frac{0}{0}

\lim_{1} \frac{{x}^{3}-{x}^{2}-x+1}{{x}^{3}-4{x}^{2}+5x-2}

como nesse caso, vai dá um indeterminação, \frac{0}{0}.. eu queria ajuda na fatoração, se alguém poder ajudar :D

brigada
Paloma
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mar 16, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em Engenharia Civil
Andamento: cursando

Re: Indeterminação - Limite

Mensagempor MarceloFantini » Ter Mar 16, 2010 21:51

Boa noite.

Paloma, tentou usar a regra de L'Hospital?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Indeterminação - Limite

Mensagempor Paloma » Ter Mar 16, 2010 22:12

eu consegui, dividindo os polinômios.. não conheço a regra de L'Hospital, mas vou pesquisar, tavez me ajude nas próximas :D

brigada :)
Paloma
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mar 16, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em Engenharia Civil
Andamento: cursando

Re: Indeterminação - Limite

Mensagempor Molina » Ter Mar 16, 2010 22:15

Também acho mais fácil usar L'Hopital do que procurar fatorar aquelas duas coisas ali.

SÓ QUE...

Quando você começa ver limites não tem derivadas ainda.
Então temos que ver qual o estágio da Paloma.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Indeterminação - Limite

Mensagempor Paloma » Ter Mar 16, 2010 22:23

tô no primeiro período, não tem derivada ainda
Paloma
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mar 16, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em Engenharia Civil
Andamento: cursando

Re: Indeterminação - Limite

Mensagempor Elcioschin » Ter Mar 16, 2010 22:55

A fatoração, neste caso é bem simples

Numerador ----> (x³ - x²) - (x - 1) = x²*(x - 1) - (x - 1) = (x² - 1)*(x - 1) = (x + 1)*(x - 1)²

Para haver uma eventual simplificação devemos verificar as raízes x = -1 e x = +1 no denominador. Briott-Ruffini:

___|.. +1 .... -4 ..... +5 ...... -2 .....
+1.|.. +1 .... -3 ...... +2 ...... 0 ...... ----> +1 é raiz
+1.|.. +1 .... -2 ....... 0 ............... ----> +1 é outra raiz
+2.|.. +1 ..... 0 ......................... ----> +2 é raiz

(x³ - x² - x + 1)/(x³ - 4x² + 5x - 1) = (x + 1)*(x - 1)²/(x - 2)((x - 1)² = (x + 1)/(x - 2)

Para x ---> 1 ------> Limite ----> - 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Indeterminação - Limite

Mensagempor Paloma » Qua Mar 17, 2010 11:11

numa questão como essa por exemplo,

\lim_{-1} \frac{\sqrt[2]{3{t}^{2}+1}-2}{2\left(t+1 \right)}

pra tirar o radical, multiplica pela conjugada certo? mas chega num ponto que eu não se mais o que fazer..

alguém sabe uma forma simple pra simpificar tudo iss ae? pra não dá em uma indeterminação..

brigada :D
Paloma
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mar 16, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em Engenharia Civil
Andamento: cursando

Re: Indeterminação - Limite

Mensagempor Elcioschin » Qua Mar 17, 2010 13:18

Multiplicando pelo conjugado:

[V(3t² + 1) - 2]*[V(3t² + 1) + 2]/2*(t + 1)*[V(3t² + 1) + 2] = [(3t² + 1) - 2²]/2*(t + 1)*[V(3t² + 1) + 2] =

(3t² - 3)/2*(t + 1)*[V(3t² + 1) + 2] = 3*(t² - 1)/2*(t + 1)*[V(3t² + 1) + 2] = 3*(t + 1)*(t - 1)/2*(t + 1)*[V(3t² + 1) + 2]

Simplificando (t + 1):

= 3*(t - 1)/2*[V(3t² + 1) + 2] ---> Fazendo t = -1:

= 3(- 1 - 1)/2*{V[3*(-1)² + 1] + 2} = 3*(-2)/(2*4) = - 3/4
Editado pela última vez por Elcioschin em Qua Mar 17, 2010 18:15, em um total de 1 vez.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Indeterminação - Limite

Mensagempor Paloma » Qua Mar 17, 2010 14:48

depois de muitas tentativas eu consegui multiplicando pelo conjugado, Elcioschin, do mesmo jeito que você fez.. mas meu resultado final deu -3/4

\lim_{-1} \frac{3t-3}{2\sqrt[2]{3{t}^{2}+1}+2}

substituindo t por -1;

\lim_{-1} \frac{3.(-1)-3}{2\sqrt[2]{3.{-1}^{2}+1}+2} = \frac{-3}{4}

eu susbtituí errado?
Paloma
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mar 16, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em Engenharia Civil
Andamento: cursando

Re: Indeterminação - Limite

Mensagempor Elcioschin » Qua Mar 17, 2010 18:15

Erro meu de soma na última linha: já corrigí.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Indeterminação - Limite

Mensagempor Paloma » Sáb Mar 20, 2010 13:57

Alguém poderia me ajudar a terminar essa questão?

\lim_{2} \frac{{x}^{3}-8}{{x}^{4}-16} ->

\lim_{2} \frac{(x+2).({x}^{2}-2x+4)}{(x+2).({x}^{3}-2{x}^{2}+4x-8)}

elimino (x+2) com (x+2), \lim_{2} \frac{{x}^{2}-2x+4}{{x}^{3}-2{x}^{2}+4x-8}

e não sei mais como continuar.
Paloma
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mar 16, 2010 20:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59