por macedo1967 » Seg Set 25, 2017 10:13
Uma loja organizou 512 pacotes de papel sulfite em pilhas, todas com o mesmo número de pacotes,
de modo que o número de pacotes de uma pilha fosse o dobro do número de pilhas.
O número de pacotes de uma pilha é:
(A) 24.
(B) 26.
(C) 28.
(D) 30.
(E) 32.
-
macedo1967
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Set 14, 2017 12:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Admnistração
- Andamento: cursando
por DanielFerreira » Qui Set 28, 2017 23:59
macedo1967 escreveu:Uma loja organizou 512 pacotes de papel sulfite em pilhas, todas com o mesmo número de pacotes,
de modo que o número de pacotes de uma pilha fosse o dobro do número de pilhas.
O número de pacotes de uma pilha é:
(A) 24.
(B) 26.
(C) 28.
(D) 30.
(E) 32.
Olá
Macedo!
Considerando "a" o número de pacotes em cada pilha e "b" a quantidade de pilhas, teremos:

e

.
Resolvendo o sistema formado pelas duas equações determinamos a resposta.
Espero ter ajudado, qualquer dúvida comente!
Att,
Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por macedo1967 » Sex Set 29, 2017 11:26
Mais uma vez Muito Obrigado Daniel!
Me ajudou muito!
-
macedo1967
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Set 14, 2017 12:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Admnistração
- Andamento: cursando
por DanielFerreira » Dom Out 08, 2017 20:10
Não há de quê, meu caro!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema, como resolver?
por LuizCarlos » Ter Nov 08, 2011 20:20
- 1 Respostas
- 1386 Exibições
- Última mensagem por joaofonseca

Ter Nov 08, 2011 21:09
Álgebra Elementar
-
- problema - como resolver?
por serafimcosta » Qua Jun 26, 2013 21:16
- 0 Respostas
- 1296 Exibições
- Última mensagem por serafimcosta

Qua Jun 26, 2013 21:16
Geometria Plana
-
- Como resolver esse problema?
por denfo » Sex Dez 04, 2009 13:22
- 1 Respostas
- 6479 Exibições
- Última mensagem por denfo

Qui Dez 10, 2009 20:16
Matemática Financeira
-
- Não sei como começar a resolver esse problema
por Sil » Ter Nov 02, 2010 19:36
- 5 Respostas
- 5993 Exibições
- Última mensagem por Sil

Ter Nov 02, 2010 21:40
Matemática Financeira
-
- [Termodinâmica] como resolver este problema?
por hugo82 » Qui Nov 17, 2011 09:21
- 7 Respostas
- 6206 Exibições
- Última mensagem por hugo82

Sex Nov 18, 2011 07:32
Termodinâmica I
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.