por kanove9 » Sex Abr 21, 2017 09:53
A partir de testes realizados pelos fabricantes de TV, há uma recomendação de que a distância ideal d do telespectador à TV deve ser tal que respeite um arco máximo de visão para fins de conforto, conforme a figura abaixo.
O quadro a seguir relaciona a dimensão, em polegadas, dos modelos de TV disponíveis no mercado com suas dimensões laterais, em centímetros.

- matematica.png (11.2 KiB) Exibido 1720 vezes
Assumindo um ângulo de 30º, encontre o maior valor P, em polegadas, que uma TV pode ter para um cômodo onde a distância entre o telespectador e a parede de fixação da TV seja de 3 metros. O valor P deve, se necessário, ser ajustado para baixo, respeitando o quadro acima.
Use cos(30º) = 0,86.
a) 32
b) 46
c) 52
d) 55
e) 65
-
kanove9
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Abr 21, 2017 09:44
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: matematica
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- MATEMÁTICA FINANCEIRA - Equivalência financeira
por ivolatanza » Ter Fev 28, 2017 15:33
- 0 Respostas
- 10475 Exibições
- Última mensagem por ivolatanza

Ter Fev 28, 2017 15:33
Matemática Financeira
-
- Matemática Financeira
por plugpc » Sáb Jun 13, 2009 16:58
- 0 Respostas
- 9313 Exibições
- Última mensagem por plugpc

Sáb Jun 13, 2009 16:58
Vestibulares
-
- matematica financeira
por Joziani » Qui Abr 22, 2010 23:18
- 1 Respostas
- 6344 Exibições
- Última mensagem por Molina

Sex Abr 23, 2010 00:07
Matemática Financeira
-
- matematica financeira
por dani chiazza » Ter Mai 18, 2010 15:32
- 1 Respostas
- 4239 Exibições
- Última mensagem por Nino Schnorr

Qua Mai 26, 2010 20:24
Matemática Financeira
-
- Matemática financeira
por Wiviane_1976 » Sex Mai 28, 2010 17:43
- 0 Respostas
- 3283 Exibições
- Última mensagem por Wiviane_1976

Sex Mai 28, 2010 17:43
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.