por carolzinhag3 » Seg Abr 10, 2017 23:11
Seja

. Mostre que os planos tangentes ao gráfico

contém a origem.
-
carolzinhag3
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 01, 2016 23:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por carolzinhag3 » Sex Abr 14, 2017 23:46
Eu fiz igual a ele, mas no final meu plano tangente deu
![\[z =-x'\cos \frac{x'}{y'}+ (\cos \tfrac{x'\ }{y'}-\frac{x'}{y'}sen\frac{x'}{y'})x +(\frac{x'^2}{y'^2}sen\frac{x'}{y'})y\] \[z =-x'\cos \frac{x'}{y'}+ (\cos \tfrac{x'\ }{y'}-\frac{x'}{y'}sen\frac{x'}{y'})x +(\frac{x'^2}{y'^2}sen\frac{x'}{y'})y\]](/latexrender/pictures/cb60f4080f6611ebffcbe1a52f01990f.png)
Só esse

que tá diferente
Alguém pode tentar resolver, por favor!!!
-
carolzinhag3
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 01, 2016 23:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação do Plano Tangente - Plano Paralalelo]
por raimundoocjr » Qui Out 24, 2013 22:10
- 0 Respostas
- 2693 Exibições
- Última mensagem por raimundoocjr

Qui Out 24, 2013 22:10
Cálculo: Limites, Derivadas e Integrais
-
- PLANO TANGENTE
por renan_cpime14 » Sáb Out 12, 2013 14:49
- 0 Respostas
- 953 Exibições
- Última mensagem por renan_cpime14

Sáb Out 12, 2013 14:49
Cálculo: Limites, Derivadas e Integrais
-
- Equacao plano tangente
por Flames » Ter Mar 13, 2012 00:10
- 4 Respostas
- 2552 Exibições
- Última mensagem por Flames

Ter Mar 13, 2012 23:15
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] plano tangente
por Higor Yuri » Seg Jun 18, 2012 12:33
- 1 Respostas
- 2900 Exibições
- Última mensagem por LuizAquino

Ter Jun 19, 2012 11:47
Cálculo: Limites, Derivadas e Integrais
-
- Superfície e Plano Tangente- URGENTE
por leroaquino » Qui Set 17, 2015 19:46
- 2 Respostas
- 2129 Exibições
- Última mensagem por leroaquino

Seg Set 21, 2015 16:10
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.