por ivoski » Ter Set 06, 2016 00:31
Considere a palavra CARRAPATO.
(a) Quantos anagramas podem ser formados a partir de suas letras? Justifique.

O numero achado foi 30240
(b) De quantas maneiras podemos permutar suas letras mantendo-se as vogais em sua ordem natural e nao permitindo que as duas letras r fiquem juntas? se possivel da uma breve explicação
Obs.: A “ordem natural” se referir as letras em ordem, ou seja, a letra O tem que obrigatoriamente ficar em ultimo lugar, permitindo assim o anagrama CRPRATAAO, por exemplo
-
ivoski
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Ago 14, 2012 17:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por paulo testoni » Qui Mar 23, 2017 16:12
Hola.
(a) Quantos anagramas podem ser formados a partir de suas letras? Justifique.
CARRAPATO possui 9 letra, sendo repetidas 2 Rs e 3 As, logo:
P9,2,3 = 9!/3!2! = 30214
-
paulo testoni
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Ter Set 30, 2008 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por paulo testoni » Qui Mar 23, 2017 16:32
Hola.
(b) De quantas maneiras podemos permutar suas letras mantendo-se as vogais em sua ordem natural e não permitindo que as duas letras r fiquem juntas?
Se as 4 vogais estão em sua ordem natural sobram então: 9 - 4 = 5 letras para permutarem entre si, sendo que os 2 Rs não podem ficar juntos, então:
P5,2 = 5!/2! = 60
Vamos descobrir em quantas permutações o 2 Rs estão juntos. Amarrando os 2 Rs juntos eles representam uma só letra, então, temos: 5 -1 = 4 letras. Isso nos dá:
P4 = 4! = 24 situações em que eles estão junto. Portanto:
60 - 24 = 36
-
paulo testoni
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Ter Set 30, 2008 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- permutando os algarismos
por darlan2009 » Qua Ago 29, 2012 10:16
- 0 Respostas
- 1781 Exibições
- Última mensagem por darlan2009

Qua Ago 29, 2012 10:16
Análise Combinatória
-
- [Permutação] permutando palavras
por fenixxx » Seg Ago 13, 2012 14:31
- 1 Respostas
- 1959 Exibições
- Última mensagem por paulo testoni

Qui Mar 23, 2017 18:00
Análise Combinatória
-
- Anagramas
por Moreno1986 » Qua Jun 23, 2010 00:33
- 0 Respostas
- 1063 Exibições
- Última mensagem por Moreno1986

Qua Jun 23, 2010 00:33
Estatística
-
- Anagramas
por heloisacarvalho83 » Seg Fev 27, 2012 22:37
- 0 Respostas
- 1915 Exibições
- Última mensagem por heloisacarvalho83

Seg Fev 27, 2012 22:37
Estatística
-
- [Anagramas]
por Mayra Luna » Dom Jan 06, 2013 15:42
- 4 Respostas
- 3401 Exibições
- Última mensagem por Mayra Luna

Dom Jan 06, 2013 23:37
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.