Em geral, apenas enunciados de exercícios.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por DonTLie » Qui Mar 11, 2010 17:23
Então, ola a todos, queria pedir ajuda em um exercicio, na verdade dois, mais são quase iguais.
vamos lá...
Hoje a professora passou igualdade de números complexos: 2 números complexos são iguais quando suas partes reais e imaginarias forem respectivamente iguais.
a + bi = c + di / a = c / b = d
Ele deu um ex: Determine x e y de modo que (2x + y) + 6i = 5 + (x + 4y)i
2x + y = 5
6 = x + 4y Então ele passou o jeito 'substituição' para calcular
2x + y = 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ y = [5 - 2x] espera
x + 4y = 6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~y = 5 - 2.2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~y = 5 - 4 = 1
x + 4y = 6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Solução = {2 , 1}
x + 4.(5 - 2x) = 6
x + 20 - 8x = 6
x - 8x = 6 - 20
-7x = -14
x = -14/-7 = 2
Então ela passou 2 exercicios, só que eles tem digamos tem menos letras, ou numeros nao sei e nao estou sabendo como fazer.
1_ Determine o valor de a e b de modo que se tenha a - bi = 5 + 2i.
Eu tentei com o formula do exemplo, mais ficou estranho, e tambem tentei trocar a letras por numeros mais ai seria facil demais
2_ Dados z1= (x+y) + 10i e z2 = 16 + (x - y)i obtenha os valores de x e y para que z1 = z2.
Essa eu nao sei como juntalos de forma correta
Alguem poderia me ajudar a resolvelos?
Obrigado
-
DonTLie
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Mar 09, 2010 20:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Qui Mar 11, 2010 17:55
Boa tarde.
Não tem fórmula nenhuma, o que a sua professora quer dizer é o seguinte: para que um número complexo seja igual a outro,
a parte real do primeiro deve ser igual a do segundo, e a parte imaginária idem.
Acredito que a maneira mais fácil de perceber o porque é: quando escrevemos um número complexo

, estamos na verdade definindo um
ponto (ou afixo) no plano de Argand-Gauss, cujas coordenadas são
(1,2). Portanto, para que você tenha um ponto idêntico a esse, devemos ter as mesmas coordenadas, que significam a parte real e imaginária do complexo.
Assim, no primeiro exercício: se

, então obrigatoriamente:


Se você conseguiu entender o conceito, fica fácil resolver o segundo.
Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DonTLie » Qui Mar 11, 2010 19:43
Obrigado pela ajuda Fantini, eu tinha pensado em fazer dessa forma, pensei que deveria seguir + - o exemplo, agora ficou facil, vlw ae

-
DonTLie
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Mar 09, 2010 20:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DonTLie » Sex Mar 12, 2010 16:37
No exercicio 2, o x e y do z1 tem que ser igual a do z2? se for nao to consiguindo achar os numeros que encaxem
-
DonTLie
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Mar 09, 2010 20:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Sex Mar 12, 2010 17:40
Lembre-se que a parte real é um número sozinho, e a parte imaginária é um número REAL acompanhado da unidade imaginária (

).
No segundo exercício temos:


De onde sai que

e

.
Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Tópicos sem Interação (leia as regras)
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda exercício de matemática números complexos?
por MMSR29 » Qui Jul 24, 2014 22:52
- 7 Respostas
- 8646 Exibições
- Última mensagem por adauto martins

Sáb Nov 01, 2014 15:34
Números Complexos
-
- [Igualdade de Euler] Trigonometria e Complexos
por clecio » Ter Ago 16, 2011 20:56
- 1 Respostas
- 2461 Exibições
- Última mensagem por MarceloFantini

Qua Set 21, 2011 22:14
Números Complexos
-
- [Números complexos] Dúvida
por iceman » Qui Mai 10, 2012 18:52
- 5 Respostas
- 3504 Exibições
- Última mensagem por fraol

Qui Mai 10, 2012 21:15
Números Complexos
-
- Números Complexos - Dúvida
por iceman » Ter Mai 15, 2012 20:22
- 1 Respostas
- 1668 Exibições
- Última mensagem por fraol

Ter Mai 15, 2012 22:20
Números Complexos
-
- Dúvida - Números complexos
por Danilo » Sex Ago 03, 2012 02:05
- 5 Respostas
- 3581 Exibições
- Última mensagem por Danilo

Sex Ago 03, 2012 16:46
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.