por Raphaelphtp » Qua Jan 11, 2017 20:38
Sendo um triângulo ABC com vértices A(2,3,1), B(2,1,-1) e C(2,2,-2), pode-se afirmar que o mesmo é um
triângulo?:
A.( ) Retângulo.
B.( ) n.d.a.
C.( ) Isósceles.
D.( ) Escaleno.
Plotei no winplot, mas mesmo assim não soube definir o tipo de triângulo.
-
Raphaelphtp
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Dez 20, 2016 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura Matemática
- Andamento: formado
por adauto martins » Sex Jan 13, 2017 18:41
![AB=\sqrt[]{(2-2)^{2}+(1-3)^{2}+(-1-1)^{2}}=\sqrt[]{4+4}=\sqrt[]{8} AB=\sqrt[]{(2-2)^{2}+(1-3)^{2}+(-1-1)^{2}}=\sqrt[]{4+4}=\sqrt[]{8}](/latexrender/pictures/05dbe038db74c419adb5fa6a2ed6347d.png)
![AC=\sqrt[]{(2-2)^{2}+(2-3)^{2}+(-2-1)^{2}}=\sqrt[]{1+9}=\sqrt[]{10} AC=\sqrt[]{(2-2)^{2}+(2-3)^{2}+(-2-1)^{2}}=\sqrt[]{1+9}=\sqrt[]{10}](/latexrender/pictures/856d645c1e17a168eeb7a408cd80d1bc.png)
![BC=\sqrt[]{(2-2)^{2}+(2-1)^{2}+(-2-(-1))^{2}}=\sqrt[]{1+1}=\sqrt[]{2} BC=\sqrt[]{(2-2)^{2}+(2-1)^{2}+(-2-(-1))^{2}}=\sqrt[]{1+1}=\sqrt[]{2}](/latexrender/pictures/a0675ed8a3e7e121ea94b6bba8397f45.png)
bom as tres medidas diferentes...verificar se é retangulo,no caso verificar se cumpre o teorema de pitagoras...
tomemos o lado maior:
![10={\sqrt[]{10}}^{2}={\sqrt[]{8}}^{2}+{\sqrt[]{2}}^{2}... 10={\sqrt[]{10}}^{2}={\sqrt[]{8}}^{2}+{\sqrt[]{2}}^{2}...](/latexrender/pictures/245d1756330f7ea71e3b1a1ca5ecefcc.png)
,logo o triangulo é retangulo...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Raphaelphtp » Sex Jan 13, 2017 19:11
obrigado adauto, estou com outra dificuldade numa questão de vetor unitário, até já está postada, se puder ajudar... muito obrigado.
-
Raphaelphtp
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Dez 20, 2016 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura Matemática
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Exércicio - dúvida - qual é o tipo?
por pkutwak » Qua Fev 24, 2010 00:02
- 1 Respostas
- 4570 Exibições
- Última mensagem por Douglasm

Qua Fev 24, 2010 10:12
Estatística
-
- Triângulo Qual a última propriedade?
por IsadoraLG » Ter Jul 08, 2014 20:11
- 1 Respostas
- 1540 Exibições
- Última mensagem por e8group

Ter Jul 08, 2014 21:25
Geometria Plana
-
- Qual a razão da PG formada pelas medidas do triângulo
por andersontricordiano » Sex Mar 04, 2011 23:43
- 4 Respostas
- 3222 Exibições
- Última mensagem por Renato_RJ

Seg Mar 07, 2011 19:36
Progressões
-
- [vetores: determinar o vértice do triângulo ABC]
por Netolucena » Seg Mai 21, 2012 15:29
- 1 Respostas
- 1201 Exibições
- Última mensagem por LuizAquino

Ter Mai 22, 2012 18:55
Geometria Analítica
-
- Proporcionalidade Atividade 3
por vcmg » Sáb Out 22, 2011 16:26
- 15 Respostas
- 8531 Exibições
- Última mensagem por audrey

Sex Out 28, 2011 18:00
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.