• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função Simples] Comparando f(x) e g(x)

[Função Simples] Comparando f(x) e g(x)

Mensagempor Rike Morais » Sex Jul 08, 2016 16:41

Boa tarde galera!

Estou com uma dúvida simples. Tenho as seguintes funções:

f(x)= \frac{x^2-x}{x-1}

g(x)= x

Eu preciso descobrir se f(x) = g(x), então comecei:

f(x)=\frac{x^2-x}{x-1}[/b] = [b]\frac{x^2-x^1}{x-1} = \frac{x}{x-1}

E é aqui que me deparo com o problema: Eu não posso eliminar os x. A conta acaba aí?

Muito Obrigado pela ajuda!
Henrique Morais
Consultor de TI
Graduando em Estatística (UFS)
Rike Morais
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jan 14, 2012 16:57
Localização: Aracaju - Se
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Daniel Bosi » Sex Jul 08, 2016 17:15

Olá, Rike. Tente começar igualando as duas funções:

\frac{x^2 - x}{x-1}=x

A partir disso basta multiplicar ambos os lados por (x-1):

x^2 - x = x(x-1)

Aplicando a distributiva no lado direito da igualdade vemos que, de fato, as funções são iguais:

x^2 - x = x^2 - x
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Rike Morais » Sex Jul 08, 2016 17:22

Muito bom! Obrigado Daniel!

:-O :y:
Henrique Morais
Consultor de TI
Graduando em Estatística (UFS)
Rike Morais
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jan 14, 2012 16:57
Localização: Aracaju - Se
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [Função Simples] Comparando f(x) e g(x)

Mensagempor Daniel Bosi » Sex Jul 08, 2016 17:44

Só perceba um detalhe, Rike:

A função f(x) não está definida para x=1 (pois caso x seja 1, o denominador dá zero e teremos uma divisão por zero). Portanto, não podemos dizer que as funções são iguais (pois não existe uma correspondência para o ponto x=1 na imagem), embora seja possível mostrar algebricamente que as expressões são equivalentes para valores de x diferentes de 1.
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}