por hugohggomes » Qui Jun 09, 2016 21:13
Olá, Boa Noite à todos!
Estou precisando da ajuda para calcular o limite nessa questão :
![lim_{x\rightarrow0}\frac{\sqrt[3]{x}^{2}-2\sqrt[3]{x}+1}{(x-1)^2} lim_{x\rightarrow0}\frac{\sqrt[3]{x}^{2}-2\sqrt[3]{x}+1}{(x-1)^2}](/latexrender/pictures/7b54080ab6ded82daa58f791f4a9849b.png)
Agradeço desde já!

-
hugohggomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jun 09, 2016 20:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qui Jun 09, 2016 23:42
Buenas ... Olhe para o numerador com um pouco mais de atenção para ver o mesmo é precisamente
![(\sqrt[3]{x} - 1)^2 (\sqrt[3]{x} - 1)^2](/latexrender/pictures/7a25102f7c33b960cb17b39921dd7493.png)
.
Para ilustrar o raciocínio , vejamos um caso familiar para fixar as idéias .. Escolha seu favorito number

.
Passo 0 - Sabemos que

. Podemos obter esta igualdade também pela divisão do polinômio

por

. Trocando

por

e

por

temos

. Observe que o primeiro membro fica

e assim obtem-se a identidade

.Evidentemente há formas mais diretas de obter esta identidade ,e.g. , multiplicando em cima e em baixo pelo conjugado de

, entretanto este raciocinio falha para o caso
![\sqrt[3]{x} - \sqrt[3]{a} \sqrt[3]{x} - \sqrt[3]{a}](/latexrender/pictures/b880959da811be97867fd03c58e27e25.png)
.
Passo 1 - Vc precisa saber fazer divisão de polinômios .. Fica difícil expor aqui o algoritmo .. Note que o quociente de

por

é

e o resto constante ; logo polinômio nulo ...Assim ,

.
Trocando

por
![\sqrt[3]{x} \sqrt[3]{x}](/latexrender/pictures/6833f4eaccfb60d5c13fdf6b6cc30aef.png)
e

por
![\sqrt[3]{a} \sqrt[3]{a}](/latexrender/pictures/76b1e479f805bb036a3487aeb35932e5.png)
temos
![((\sqrt[3]{x})^3 -(\sqrt[3]{a})^3 = (\sqrt[3]{x} -\sqrt[3]{a})((\sqrt[3]{x} )^2 + (\sqrt[3]{a} (\sqrt[3]{x} + (\sqrt[3]{a} )^2 )) ((\sqrt[3]{x})^3 -(\sqrt[3]{a})^3 = (\sqrt[3]{x} -\sqrt[3]{a})((\sqrt[3]{x} )^2 + (\sqrt[3]{a} (\sqrt[3]{x} + (\sqrt[3]{a} )^2 ))](/latexrender/pictures/2c2d22668782886c290a045df8cc9f10.png)
. Observe que o primeiro membro fica

e assim obtem-se a identidade
![\frac{\sqrt{x} - \srqt{a} }{x-a } = \frac{1}{(\sqrt[3]{x} )^2 + (\sqrt[3]{a} (\sqrt[3]{x} + (\sqrt[3]{a} )^2} \frac{\sqrt{x} - \srqt{a} }{x-a } = \frac{1}{(\sqrt[3]{x} )^2 + (\sqrt[3]{a} (\sqrt[3]{x} + (\sqrt[3]{a} )^2}](/latexrender/pictures/822d79b6f48b8d0146ac910f30c7456b.png)
E o processo continuar ....
Passo 2 -
(...)
Passo ( n -2)
![\frac{\sqrt[n]{x} - \sqrt[n]{a} }{x-a} = \frac{1}{\sum_{i=0}^{n-1} x^{n-1-i} a^i } \frac{\sqrt[n]{x} - \sqrt[n]{a} }{x-a} = \frac{1}{\sum_{i=0}^{n-1} x^{n-1-i} a^i }](/latexrender/pictures/441b0ee931c473699f94a3ab6071d81c.png)
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4075 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] exercicio limites envolvendo ln
por lucasdemirand » Qua Jul 10, 2013 00:31
- 1 Respostas
- 2078 Exibições
- Última mensagem por young_jedi

Qua Jul 10, 2013 21:48
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] exercicio de limites tendendo a zero
por lucasdemirand » Qui Jul 11, 2013 18:00
- 1 Respostas
- 1695 Exibições
- Última mensagem por e8group

Sex Jul 12, 2013 11:43
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Exercício com limites notáveis
por fff » Sáb Fev 08, 2014 21:41
- 3 Respostas
- 2512 Exibições
- Última mensagem por e8group

Dom Fev 09, 2014 15:29
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] exercicio de limites
por lucasdemirand » Ter Jul 09, 2013 16:21
- 1 Respostas
- 1692 Exibições
- Última mensagem por young_jedi

Sex Jul 26, 2013 20:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.