por Whitesttax » Ter Abr 26, 2016 17:18
Boa tarde.
Não estou conseguindo resolver o seguinte problema:
Um reservatório de areia tem o formato de uma pirâmide invertida de base quadrada. A taxa de vazão da areia deste reservatório diminui a uma velocidade de 40pi cm^3/min.
Esta areia forma no chão um monte cônico. O volume total de areia no reservatório era 243pi cm^3. Determine a velocidade com que aumenta a altura do cone quando um terço da areia já caiu do reservatório. Sabendo que neste instante a altura do monte é 3cm e o raio aumenta uma taxa de 0,3cm/min.
O que já tentei fazer foi aplicar a fórmula do volume do cone, que se estou certo é V = pi*r^2*h / 3. Aí derivei para descobrir a altura mas está dando um resultado negativo, e bem errado (a resposta certa é 1.28cm/min)
Um ponto que talvez errei foi usar a taxa de variação do volume da pirâmide na conta debaixo sem mudar nada, não sei o que teria que mudar... O raio eu consegui aplicando a fórmula do volume também, só que sem derivar.
Mais ou menos assim...

Obrigado!
-
Whitesttax
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 16, 2015 23:04
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ciências da computação
- Andamento: cursando
por adauto martins » Sáb Mai 07, 2016 21:21
encontrei um valor prox. ao valor da resposta,vamos á soluçao:
1)

,pois os volumes serao os mesmos...


...
2)

...
substituindo o resultado na prim.relaçao teremos:
![{h}_{p}=(729.\pi)/(\pi.{r}^{2})\Rightarrow r=\sqrt[]{729/3}=\sqrt[]{243}\Rightarrow {h'}_{p}=-(729.\pi).2.r.r'/({r}^{4})=-(729.\pi.2).r'/{r}^{3}=-(1458.\pi)/{(\sqrt[]{243)}}^{3}) {h}_{p}=(729.\pi)/(\pi.{r}^{2})\Rightarrow r=\sqrt[]{729/3}=\sqrt[]{243}\Rightarrow {h'}_{p}=-(729.\pi).2.r.r'/({r}^{4})=-(729.\pi.2).r'/{r}^{3}=-(1458.\pi)/{(\sqrt[]{243)}}^{3})](/latexrender/pictures/5164c98cad3d68ded116c952ac82c70d.png)
...

,osinal negativo é pq a areia esta caindo,questao de referencial...em valor absoluto é o calculado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Dom Mai 08, 2016 00:15
caro Whitesttax e colegas do site,
a resoluçao apresentada por mim do exercicio esta incorreta,pois nao levei em consideraçao a açao da gravidade sobre a areia q. cai da piramide...entao em ocasiao oportuna irei apresenta uma soluçao correta,no mais obrigado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qua Mai 11, 2016 12:21
vamos considerar a areia q. escoa fazendo o cone,dessa forma podemos eliminar o fator da gravidade q. atua na areia da piramide,entao:
a vazao da areia da piramide sera a mesma q. forma o cone,pois o tempo de esoamento da areia da piramide,sera o mesmo da formaçao do cone,logo:


(aqui regra da cadeia)1)

...temos q.:

,p/ o instante pedido teremos:
![(243.\pi)/3=(1/3).\pi.{r}^{2}.h\Rightarrow r=\sqrt[]{243/3}=9 (243.\pi)/3=(1/3).\pi.{r}^{2}.h\Rightarrow r=\sqrt[]{243/3}=9](/latexrender/pictures/b05faff4df253408ff28932842ef4ef0.png)
...

...
voltando a 1º eq.

...bom é isso,obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada como Taxa de Variação
por Ronaldobb » Sex Set 21, 2012 20:29
- 3 Respostas
- 2276 Exibições
- Última mensagem por MarceloFantini

Sáb Set 22, 2012 00:05
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Taxa de variação
por Aliocha Karamazov » Sáb Nov 26, 2011 18:40
- 3 Respostas
- 8077 Exibições
- Última mensagem por MarceloFantini

Dom Nov 27, 2011 01:57
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Taxa de Variação
por Vanny » Dom Set 30, 2012 20:58
- 0 Respostas
- 3116 Exibições
- Última mensagem por Vanny

Dom Set 30, 2012 20:58
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] - Taxa de Variação
por Jeks_Osodrac » Ter Jul 30, 2013 19:19
- 3 Respostas
- 3282 Exibições
- Última mensagem por Russman

Qua Jul 31, 2013 18:03
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Taxa de variação - velocidade
por emanes » Qua Out 17, 2012 11:10
- 1 Respostas
- 3935 Exibições
- Última mensagem por young_jedi

Qua Out 17, 2012 11:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.