por Whitesttax » Ter Abr 26, 2016 17:18
Boa tarde.
Não estou conseguindo resolver o seguinte problema:
Um reservatório de areia tem o formato de uma pirâmide invertida de base quadrada. A taxa de vazão da areia deste reservatório diminui a uma velocidade de 40pi cm^3/min.
Esta areia forma no chão um monte cônico. O volume total de areia no reservatório era 243pi cm^3. Determine a velocidade com que aumenta a altura do cone quando um terço da areia já caiu do reservatório. Sabendo que neste instante a altura do monte é 3cm e o raio aumenta uma taxa de 0,3cm/min.
O que já tentei fazer foi aplicar a fórmula do volume do cone, que se estou certo é V = pi*r^2*h / 3. Aí derivei para descobrir a altura mas está dando um resultado negativo, e bem errado (a resposta certa é 1.28cm/min)
Um ponto que talvez errei foi usar a taxa de variação do volume da pirâmide na conta debaixo sem mudar nada, não sei o que teria que mudar... O raio eu consegui aplicando a fórmula do volume também, só que sem derivar.
Mais ou menos assim...

Obrigado!
-
Whitesttax
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Mar 16, 2015 23:04
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ciências da computação
- Andamento: cursando
por adauto martins » Sáb Mai 07, 2016 21:21
encontrei um valor prox. ao valor da resposta,vamos á soluçao:
1)

,pois os volumes serao os mesmos...


...
2)

...
substituindo o resultado na prim.relaçao teremos:
![{h}_{p}=(729.\pi)/(\pi.{r}^{2})\Rightarrow r=\sqrt[]{729/3}=\sqrt[]{243}\Rightarrow {h'}_{p}=-(729.\pi).2.r.r'/({r}^{4})=-(729.\pi.2).r'/{r}^{3}=-(1458.\pi)/{(\sqrt[]{243)}}^{3}) {h}_{p}=(729.\pi)/(\pi.{r}^{2})\Rightarrow r=\sqrt[]{729/3}=\sqrt[]{243}\Rightarrow {h'}_{p}=-(729.\pi).2.r.r'/({r}^{4})=-(729.\pi.2).r'/{r}^{3}=-(1458.\pi)/{(\sqrt[]{243)}}^{3})](/latexrender/pictures/5164c98cad3d68ded116c952ac82c70d.png)
...

,osinal negativo é pq a areia esta caindo,questao de referencial...em valor absoluto é o calculado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Dom Mai 08, 2016 00:15
caro Whitesttax e colegas do site,
a resoluçao apresentada por mim do exercicio esta incorreta,pois nao levei em consideraçao a açao da gravidade sobre a areia q. cai da piramide...entao em ocasiao oportuna irei apresenta uma soluçao correta,no mais obrigado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qua Mai 11, 2016 12:21
vamos considerar a areia q. escoa fazendo o cone,dessa forma podemos eliminar o fator da gravidade q. atua na areia da piramide,entao:
a vazao da areia da piramide sera a mesma q. forma o cone,pois o tempo de esoamento da areia da piramide,sera o mesmo da formaçao do cone,logo:


(aqui regra da cadeia)1)

...temos q.:

,p/ o instante pedido teremos:
![(243.\pi)/3=(1/3).\pi.{r}^{2}.h\Rightarrow r=\sqrt[]{243/3}=9 (243.\pi)/3=(1/3).\pi.{r}^{2}.h\Rightarrow r=\sqrt[]{243/3}=9](/latexrender/pictures/b05faff4df253408ff28932842ef4ef0.png)
...

...
voltando a 1º eq.

...bom é isso,obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada como Taxa de Variação
por Ronaldobb » Sex Set 21, 2012 20:29
- 3 Respostas
- 2132 Exibições
- Última mensagem por MarceloFantini

Sáb Set 22, 2012 00:05
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Taxa de variação
por Aliocha Karamazov » Sáb Nov 26, 2011 18:40
- 3 Respostas
- 7915 Exibições
- Última mensagem por MarceloFantini

Dom Nov 27, 2011 01:57
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Taxa de Variação
por Vanny » Dom Set 30, 2012 20:58
- 0 Respostas
- 3046 Exibições
- Última mensagem por Vanny

Dom Set 30, 2012 20:58
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] - Taxa de Variação
por Jeks_Osodrac » Ter Jul 30, 2013 19:19
- 3 Respostas
- 3129 Exibições
- Última mensagem por Russman

Qua Jul 31, 2013 18:03
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Taxa de variação - velocidade
por emanes » Qua Out 17, 2012 11:10
- 1 Respostas
- 3844 Exibições
- Última mensagem por young_jedi

Qua Out 17, 2012 11:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.