por jurexjurex » Seg Mar 07, 2016 07:16
Um muro tem 3 m de altura, é paralelo à parede de um edifício e está a 0,30 m desta. Determine o comprimento da menor escada que vá do chão à parede do edifício, tocando o muro.
-
jurexjurex
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mar 07, 2016 07:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por adauto martins » Dom Mar 13, 2016 12:48
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Dom Mar 13, 2016 13:36
caro colegas,aqui fiço o calculo da escada esta entre o muro e a parede...o problema nao especificou bem onde a escada estava...farei o calculo da escada por fora do muro...
vou postar depois,tdbem...obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Seg Mar 14, 2016 10:40
vamos usar semelhança de triangulos para obter medidas em funçao de medidas...
chamaremos y=altura ,x=distancia maior do triangulo maior...logo...

,entao obtivemos y=f(x)...
o comprim. da escada sera dado pela hipotenusa do triangulo maior...
![c(x,y)=\sqrt[]{({x}^{2}+{y}^{2})} c(x,y)=\sqrt[]{({x}^{2}+{y}^{2})}](/latexrender/pictures/709211ba8dfcb6a4693deb80873bbf64.png)
...o qual
![c(x)=\sqrt[]{({x}^{2}+{(3x/(x-0.3)}^{2})} c(x)=\sqrt[]{({x}^{2}+{(3x/(x-0.3)}^{2})}](/latexrender/pictures/3018aaaacfd3727f61139ff019b32165.png)
pois obtivemos y=f(x)e

passou a ser

...agora é derivar c(x),igualar a zero e achar x,e substituir na expressao
![c(x)=\sqrt[]{({x}^{2}+{(3x/(x-0.3)}^{2})} c(x)=\sqrt[]{({x}^{2}+{(3x/(x-0.3)}^{2})}](/latexrender/pictures/3018aaaacfd3727f61139ff019b32165.png)
,entao maos a massa,resolva-a...obrigado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Máximos e Minimos [ Derivada ]
por jazzbest » Ter Set 03, 2013 18:54
- 1 Respostas
- 1906 Exibições
- Última mensagem por young_jedi

Ter Set 03, 2013 20:28
Cálculo: Limites, Derivadas e Integrais
-
- Derivada: minimos e máximos
por Fernandobertolaccini » Dom Jul 13, 2014 23:03
- 1 Respostas
- 1582 Exibições
- Última mensagem por e8group

Seg Jul 14, 2014 01:33
Cálculo: Limites, Derivadas e Integrais
-
- Derivada: Minimos, máximos e inflexão
por Fernandobertolaccini » Dom Jul 13, 2014 15:35
- 1 Respostas
- 1443 Exibições
- Última mensagem por e8group

Dom Jul 13, 2014 16:01
Cálculo: Limites, Derivadas e Integrais
-
- Derivada: Minimos, máximos e inflexão
por Fernandobertolaccini » Dom Jul 13, 2014 15:41
- 1 Respostas
- 1204 Exibições
- Última mensagem por Russman

Dom Jul 13, 2014 16:15
Cálculo: Limites, Derivadas e Integrais
-
- dificuldade em achar derivada(máximos e mínimos)
por letciabr7 » Qua Jun 10, 2015 17:51
- 1 Respostas
- 2091 Exibições
- Última mensagem por nakagumahissao

Sáb Jun 13, 2015 13:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.