por caciano-death » Qua Jan 27, 2016 15:08
-
caciano-death
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Jan 27, 2016 14:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Baltuilhe » Sáb Fev 20, 2016 19:55
Boa tarde!
Domínio da função:

Derivando:

Para obter os pontos críticos devemos encontrar os valores onde a derivada não existe ou valha zero. Portanto:

Este ponto não pertence ao domínio.
Não há derivada em x=0 e em x=1, mas também não pertencem ao domínio.
Analisando o sinal da derivada primeira:
2x-1 ==> x=1/2 ==> x<1/2 (negativa) x>1/2 (positiva)
x ==> x=0 ==> x<0 (negativa) x>0 (positiva)
x-1 ==> x=1 ==> x<1 (negativa) x>1 (positiva)
- Código: Selecionar todos
2x-1------(-)----------------(-)------(1/2)-------(+)-----------------(+)-------
x----------(-)------(0)------(+)-------------------(+)-----------------(+)-------
x-1--------(-)---------------(-)--------------------(-)------(1)-------(+)--------
f'(x)-------(-)-----(0)-------(+)------(1/2)-------(-)------(1)-------(+)--------
f'(x)=(2x-1)/((x(x-1))
Então, para valores menores do que 0 a derivada é negativa, portanto, função DECRESCENTE.
Para valores maiores do que 1 a derivada é positiva, portanto, função CRESCENTE.
a) Não há pontos de mínimo local.
b) Não há pontos de máximo local.
c) f(x) é crescente para x>1
d) f(x) é decrescente para x<0
Espero ter ajudado!
-
Baltuilhe
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Dom Mar 24, 2013 21:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
por caciano-death » Sex Fev 26, 2016 10:13
obrigado vlw ae
-
caciano-death
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Jan 27, 2016 14:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- derivadas analise do comportamento da função
por caciano-death » Sex Fev 26, 2016 10:17
- 0 Respostas
- 1374 Exibições
- Última mensagem por caciano-death

Sex Fev 26, 2016 10:17
Cálculo: Limites, Derivadas e Integrais
-
- Investigue o comportamento da funçaõ dada f(x)
por Ana Maria da Silva » Sex Mai 17, 2013 11:52
- 0 Respostas
- 1092 Exibições
- Última mensagem por Ana Maria da Silva

Sex Mai 17, 2013 11:52
Cálculo: Limites, Derivadas e Integrais
-
- [método dos pontos críticos] comportamento de uma função
por Ge_dutra » Qua Abr 03, 2013 20:34
- 4 Respostas
- 2654 Exibições
- Última mensagem por Ge_dutra

Qui Abr 04, 2013 20:09
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas de uma função
por Sherminator » Ter Nov 13, 2012 14:39
- 3 Respostas
- 1851 Exibições
- Última mensagem por e8group

Qua Nov 14, 2012 09:43
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Mínimo de função
por vinisoares9 » Dom Jun 24, 2012 00:22
- 2 Respostas
- 1627 Exibições
- Última mensagem por vinisoares9

Dom Jun 24, 2012 02:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.