por Marcosd » Qui Jan 28, 2016 15:24
Considere o seguinte hexágono regular onde foi traçado um segmento de comprimento d em seu interior:

Sabendo que a área deste hexágono é de 216 3 cm², é correto afirmar que o valor de “d” é igual a:
a)8 b)12 c)24 d)36
-
Marcosd
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jan 28, 2016 15:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gastronomia
- Andamento: cursando
por adauto martins » Sex Jan 29, 2016 10:36

- sol.
- CodeCogsEqn (1).gif (2.61 KiB) Exibido 5612 vezes
a resposta q. mais se aproxc. é D=8
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Sex Jan 29, 2016 11:52
uma correçao...
o D=9 q. calculei é um dos lados do hexagono regular...logo,
d=2.9=18...das opçoes apresentadas tanto b),qto c),ambas estao a 6cm de 18cm...nesse caso o problema nao pergunta qual o menor ou maior valor de d...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por DanielFerreira » Dom Jan 31, 2016 12:58
Prezados
Marcos e
Adauto, boa tarde!
No valor da área do hexágono regular não figurava a raiz quadrada de três...
Marcosd escreveu:Considere o seguinte hexágono regular onde foi traçado um segmento de comprimento d em seu interior:
Sabendo que a área deste hexágono é de 216?3 cm², é correto afirmar que o valor de “d” é igual a:
a)8 b)12 c)24 d)36
Marcos, o hexágono regular é formado por 6 triângulos equiláteros. Sabendo disso, podemos encontrar a área do triângulo e multiplicar o valor encontrado por 6.
Consideremos que o lado do triângulo seja "l" e a altura "h". Uma relação entre essas variáveis é obtida aplicando o Teorema de Pitágoras, veja:
l² = h² + (l/2)²
l² - l²/4 = h²
3l² = 4h²
h = (l?3)/2 Sabendo que a área de um triângulo qualquer é dada por: S = (base x altura)/2. Temos que:
S = (l . h)/2
S = [l . (l?3)/2]/2
S = (l²?3)/4 Multiplicando S por 6 teremos a área do hexágono regular. Daí,
S_{total} = 6 . S
216?3 = 6 . (l²?3)/4
6l²?3 = 864?3
l² = 144
l = 12 cm Mas, assim como concluímos que o hexágono regular é formado por 6 triângulos equiláteros tiramos que D = 2l.
Por fim,
D = 2l
D = 2 . 12
D = 24 cm
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por adauto martins » Dom Jan 31, 2016 20:26
ah ta...entao S=216.(3)^1/2 e nao 216,3...blza,obrigado caro colega daniel...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana - "150º, 160º, 40º e x"
por raimundoocjr » Ter Jan 25, 2011 20:36
- 4 Respostas
- 2532 Exibições
- Última mensagem por Renato_RJ

Qua Jan 26, 2011 21:54
Geometria Plana
-
- Geometria Plana - "Folhas sobrepostas"
por raimundoocjr » Qua Jan 26, 2011 21:21
- 2 Respostas
- 1887 Exibições
- Última mensagem por raimundoocjr

Qui Jan 27, 2011 15:40
Geometria Plana
-
- Geometria Plana - "Círculo Inscrito"
por raimundoocjr » Sáb Fev 12, 2011 16:18
- 2 Respostas
- 1954 Exibições
- Última mensagem por raimundoocjr

Dom Fev 13, 2011 09:15
Geometria Plana
-
- Geometria Plana - "Área Máxima"
por raimundoocjr » Sex Out 21, 2011 20:30
- 2 Respostas
- 4832 Exibições
- Última mensagem por saberdigitalnet

Sáb Nov 24, 2012 17:19
Geometria Plana
-
- Geometria Plana - "Valor de RQ"
por raimundoocjr » Ter Fev 15, 2011 21:54
- 2 Respostas
- 1829 Exibições
- Última mensagem por raimundoocjr

Qua Fev 16, 2011 13:49
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.