• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FUNÇÃO QUADRÁTICA] Comparação de raízes

[FUNÇÃO QUADRÁTICA] Comparação de raízes

Mensagempor STARK » Sex Dez 18, 2015 20:39

Determine m para que a equação do 2°grau mx^2 - 2(m-1)x - m - 1 = 0 tenha uma única raíz entre -1 e 2.



GABARITO : m < 3/2 e m ? 0 ou m > 3.



Bom, como ele disse que a equação deve ter apenas uma raíz , a primeira coisa que fiz foi igualar ? à zero, mas para minha infelicidade, o erro já aparece no início, pois temos raízes negativas. Sinceramente, não sei para onde ir. Peço a ajuda de vocês para resolver a questão.Acredito que talvez esta questão possa ter sido resolvida em algum lugar, mas como sou novato eu não soube encontrar, então se puderem pelo menos me dizer o link com a resolução eu agradeço. Obrigado!
STARK
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 18, 2015 20:22
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [FUNÇÃO QUADRÁTICA] Comparação de raízes

Mensagempor Russman » Qua Dez 23, 2015 22:29

Isto. O discriminante deve ser nulo para que se tenha duas raízes reais idênticas, isto é, uma única raiz. Daí,

(-2(m-1))^2 -4.(m).(-m-1)=0 => 4(m-1)^2 + 4m(m+1) = 0 => m^2-2m+1+m^2+m=0=> 2m^2-m+1=0

Nesta equação para m temos que 1^2-4.2.1<0. Logo, não possui raíz real. Assim, não há nenhum m real tal que a equação dada tenha apenas uma única raiz.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)