• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funçoes ajuda!!

funçoes ajuda!!

Mensagempor flavio970 » Seg Out 26, 2015 17:43

Considere a Funçao ƒ (x) =? x²+6x+9 + 2x² +2x -4
------------
2 x -2
a) Determine o dominio de (ƒ) na forma de intervalo ou reuniao de intervalos.
b) simplifique ao maximo a expressao que define (ƒ) e esboçe seu grafico.
c) calcule o valor de ? ƒ (6) + ƒ (-17)
obs: peço desculpas por escrever do modo errado,e agradeço a quem resolver a questao,obrigado!!
flavio970
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Set 29, 2015 13:13
Formação Escolar: GRADUAÇÃO
Área/Curso: ADMINISTRAÇAO
Andamento: cursando

Re: funçoes ajuda!!

Mensagempor nakagumahissao » Sáb Out 31, 2015 16:31

De acordo com as regras e esta não é a primeira vez que lhe informamos isto, o que já tentou fazer para resolver o problema?


Grato



Sandro
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}