• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funçoes ajuda!

funçoes ajuda!

Mensagempor flavio970 » Seg Out 26, 2015 12:47

f(x) = \sqrt{x^2+6x+9}+\dfrac{2x^2+2x-4}{2x-2}.considere esta função.

a) determine o domínio de( f) na forma de intervalo ou reunião de intervalo.
b) simplifique ao máximo a expressão que define ( f ) e esboce seu gráfico.

c) calcule o valor de = \sqrt{f(6)+{f(-17)}.
flavio970
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Set 29, 2015 13:13
Formação Escolar: GRADUAÇÃO
Área/Curso: ADMINISTRAÇAO
Andamento: cursando

Re: funçoes ajuda!

Mensagempor nakagumahissao » Sex Nov 06, 2015 10:57

Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.