por davifd_ » Ter Ago 18, 2015 15:56
Não aprendi a usar ainda o editor de fórmulas por isso anexei o limite. Minha dúvida é como calcular limites infinitos envolvendo séries, agradeço antecipadamente
- Anexos
-

- Limite
- limite.jpg (8.28 KiB) Exibido 9755 vezes
-
davifd_
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Ago 18, 2015 15:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: formado
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por davifd_ » Ter Ago 18, 2015 23:40
nakagumahissao
inicialmente eu pensei assim tb, porém a resposta desse limite é 1/3, tem que fazer alguma jogada com o limite da série
-
davifd_
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Ago 18, 2015 15:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: formado
por nakagumahissao » Ter Ago 18, 2015 23:54
davifd_,
Então, como esse limite possui uma indefinição na fração, tentei por L'Hôpital também, mas o resultado é o mesmo! Apliquei duas vezes:


Vou pensar mais um pouco e entro em contato em breve. Por um acaso, poderia me informar de onde tirou esse problema (livro, autor, página, volume, edição?) por favor?
Grato
Sandro
Editado pela última vez por
nakagumahissao em Qua Ago 19, 2015 01:53, em um total de 1 vez.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por davifd_ » Ter Ago 18, 2015 23:56
[quote="nakagumahissao"]
Esse problema foi de um concurso para fuzileiro naval, área de máquinas, é de engenharia ano 2014
-
davifd_
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Ago 18, 2015 15:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: formado
por nakagumahissao » Qua Ago 19, 2015 00:27
davifd_,
Então davifd, coloquei esta sua questão no Mapple que é um software voltado para a matemática e cálculos científicos e o resultado foi esse que calculamos mesmo, ou seja, zero. Acredito que o gabarito esteja errado.
https://goo.gl/photos/iGei8WW8WsQ9ZLQu9
Acho que agora só aguardando outro professor passar por aqui para ajudar a sanar esta dúvida. Mas como já estou respondendo, acredito que outro professor não olhará este thread. Talvez se você postar novamente o problema para ter uma segunda opinião, quem sabe?
Grato
Sandro
Editado pela última vez por
nakagumahissao em Qua Ago 19, 2015 01:53, em um total de 1 vez.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por davifd_ » Qua Ago 19, 2015 00:57
[quote="nakagumahissao"]davifd_,
Opa, eu joguei no mathcad e deu 1/3, vc definiu errado a série eu acho... Tem que por x^2 e indo de x=1 até n o somatório
-
davifd_
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Ago 18, 2015 15:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: formado
por nakagumahissao » Qua Ago 19, 2015 00:58
Vou tentar aqui. Já retorno.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por nakagumahissao » Qua Ago 19, 2015 01:27
Realmente:

Utilizando esta identidade teremos:

![= \lim_{n \rightarrow \infty} \frac{n(n+1)(2n+1)}{6n^3} = \lim_{n \rightarrow \infty} \frac{(n+1)(2n+1)}{6n^2}\;\;\; [1] = \lim_{n \rightarrow \infty} \frac{n(n+1)(2n+1)}{6n^3} = \lim_{n \rightarrow \infty} \frac{(n+1)(2n+1)}{6n^2}\;\;\; [1]](/latexrender/pictures/24d3c6894bf152b9c27e6c2e10e885e7.png)
Usando L'Hôpital duas vezes, tem-se:

Nossa! Essa foi difícil! heheheh - Acho que agora está certo! Desculpe pelo erro! Afinal, não somos infalíveis!
Para o caso de desejar saber:
http://www.9math.com/book/sum-squares-f ... al-numbers
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por davifd_ » Qua Ago 19, 2015 07:12
nakagumahissao
Obrigado! Com a identidade saiu fácil, o problema é decorar pra prova ne? hahahah
-
davifd_
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Ago 18, 2015 15:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: formado
por nakagumahissao » Qua Ago 19, 2015 09:17
Verdade! Bons estudos
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites] calculo de limite envolvendo n e x
por Henrique Bueno » Dom Abr 15, 2012 14:31
- 2 Respostas
- 2074 Exibições
- Última mensagem por Henrique Bueno

Seg Abr 16, 2012 19:08
Cálculo: Limites, Derivadas e Integrais
-
- limites infinitos
por oleve » Qua Jan 21, 2009 18:15
- 1 Respostas
- 2862 Exibições
- Última mensagem por Sandra Piedade

Sáb Jan 24, 2009 22:30
Cálculo: Limites, Derivadas e Integrais
-
- Limites infinitos
por Sobreira » Sáb Out 13, 2012 00:07
- 7 Respostas
- 4172 Exibições
- Última mensagem por MarceloFantini

Ter Out 30, 2012 09:07
Cálculo: Limites, Derivadas e Integrais
-
- Limites Infinitos. Ajuda
por valeuleo » Qua Jun 22, 2011 12:39
- 4 Respostas
- 2850 Exibições
- Última mensagem por renatav

Dom Jun 26, 2011 22:46
Cálculo: Limites, Derivadas e Integrais
-
- Limites infinitos com modulo.
por Sobreira » Sex Out 12, 2012 18:04
- 13 Respostas
- 8532 Exibições
- Última mensagem por Sobreira

Sex Out 12, 2012 23:43
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.