• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema de limites

problema de limites

Mensagempor juflamanto » Sex Ago 07, 2015 18:05

Estou tentando calcular um limite,porem travei em um certo ponto.
limite de x quando tende a -5 pela direita ((abs(3+2x-x^2)-32)/((x^2)+(3x)-10)
ja fatorei,mas nao consegui sair dessa parte -(x+1)(x-3)-32/(x-2)(x+5).
Aqui tem o link do Wolfram: http://www.wolframalpha.com/input/?i=li ... x%29-10%29
juflamanto
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 07, 2015 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: fisica
Andamento: cursando

Re: problema de limites

Mensagempor nakagumahissao » Sáb Ago 08, 2015 12:18

\lim_{x\rightarrow {(-5)}^{+}} \frac{\left| 3 + 2x - x^2 \right| - 32}{x^2 + 3x - 10}

Temos aqui uma indefinição do tipo 0/0. Assim, aplicando L'Hôpital teremos:

\lim_{x\rightarrow {(-5)}^{+}} \frac{ \frac{d}{dx} \left(\left| 3 + 2x - x^2 \right| - 32\right)}{\frac{d}{dx}\left(x^2 + 3x - 10 \right)} = \lim_{x\rightarrow {(-5)}^{+}} \frac{\left|2 - 2x \right|}{2x + 3}

\frac{\left|2 - 2(-5) \right|}{2(-5) + 3} =  \frac{\left|2 + 10 \right|}{-10 + 3} = \frac{ \pm \sqrt{{12}^{2}}}{-7} = \frac{12}{7}

Foi escolhido o valor positivo porque vindo da direita esses valores são positivos. Experimente substituir x = 4 e verá que o resultado será positivo.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59