por Larissa28 » Ter Ago 04, 2015 00:44
Calcule, caso exista (e se não existir justificar) o limite da sequência de termo geral
![an = \sqrt[]{n+1} - \sqrt[]{n} an = \sqrt[]{n+1} - \sqrt[]{n}](/latexrender/pictures/aaf4e15ab7a29f5c0c19528913e74448.png)
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por nakagumahissao » Ter Ago 04, 2015 19:52
Solução:
![\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2}{\sqrt{n+1}+\sqrt{n}} \,\,\,\,\,\,\,\, [1] \sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2}{\sqrt{n+1}+\sqrt{n}} \,\,\,\,\,\,\,\, [1]](/latexrender/pictures/b22b50402908816a6ef7d28ba69641ac.png)
No Passo acima, foi aplicado o seguinte:
Sejam dois números a e b, pertencentes aos reais, sendo que a - b diferente de zero. Então:
![a + b = (a+b) \frac{(a-b)}{(a-b)} = \frac{a^2 - b^2}{a - b} \,\,\,\,\,\,\,\,\,\,\, [2] a + b = (a+b) \frac{(a-b)}{(a-b)} = \frac{a^2 - b^2}{a - b} \,\,\,\,\,\,\,\,\,\,\, [2]](/latexrender/pictures/c0e09d552483662ad71d11ea121c9ba0.png)
Agora, considere que:

Substituindo estes valores acima em [2], obtem-se o resultado dado em [1] acima. Prosseguindo de [1] teremos:

Como n é sempre positivo, ignoramos o sinal do módulo acima. Desta maneira:

Veja que quando n tende ao infinito,
![n \rightarrow \infty \Rightarrow \frac{1}{\sqrt{\infty +1}+\sqrt{\infty}} \,\,\, e \,\,\, \frac{1}{\infty} \,\,\,\,\,\,\,\, [3] n \rightarrow \infty \Rightarrow \frac{1}{\sqrt{\infty +1}+\sqrt{\infty}} \,\,\, e \,\,\, \frac{1}{\infty} \,\,\,\,\,\,\,\, [3]](/latexrender/pictures/79a5cd992e6c026cf560a96c7f6f1131.png)
toda a fração tende para zero. Por isto, o resultado é zero.
Nota: As operações realizadas em [3] são apenas ilustrativas e não são válidas como operações. Na realidade, devemos pensar apenas no fato de que n está se aproximando do infinito, seja ele qual for. Infinito não é um número e portanto, não podemos fazer operações com ele. O que se quer dizer em [3] é que, quanto mais nós aumentamos o valor de n em direção ao infinito, teremos um n "grande" e que, estando no denominador da fração, faz com que 1 dividido por um número muito grande tem como resultado um número perto de zero e quanto mais aumentarmos o valor de "n", mais ainda nos aproximaremos de zero.
Editado pela última vez por
nakagumahissao em Qua Ago 05, 2015 16:47, em um total de 4 vezes.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por Larissa28 » Ter Ago 04, 2015 22:10
Muito obrigada.
Gostaria de saber se esta correto desta forma tambem?
- Anexos
-

-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por nakagumahissao » Qua Ago 05, 2015 16:08
Larissa,
Cometi um enorme engano na resolução anterior. Fiz as correções necessárias e postei novamente. Me desculpe.
Com o erro que cometi, levei você a pensar que é possível fazer operações com o símbolo de infinito, o que não é verdade.
Nota:
As operações realizadas em [3] na minha resolução são apenas ilustrativas e não são válidas como operações. Na realidade, devemos pensar apenas no fato de que n está se aproximando do infinito, seja ele qual for. Infinito não é um número e portanto, não podemos fazer operações com ele. O que se quer dizer em [3] é que, quanto mais nós aumentamos o valor de n em direção ao infinito, teremos um n "grande" e que, estando no denominador da fração, faz com que 1 dividido por um número muito grande tem como resultado um número perto de zero e quanto mais aumentarmos o valor de "n", mais ainda nos aproximaremos de zero. Por isso, o Limite de 1 dividido por um número muito grande e cada vez mais crescendo, tendendo ao infinito, tem como resultado Zero.Respondendo sua última pergunta:
Até poderia estar correta, no entanto, como não podemos utilizar o símbolo Infinito para fazer "contas",

é indefinida e não zero.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por Larissa28 » Qua Ago 05, 2015 20:45
Agora sim entendi.
Muito obrigada, vou refazer a questão (:
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Sequencias] Calculo do limite da sequencia
por Larissa28 » Qua Ago 05, 2015 01:09
- 2 Respostas
- 4167 Exibições
- Última mensagem por gshickluvx

Ter Nov 03, 2015 01:54
Sequências
-
- [Sequencias] Termo geral da sequencia 0,1,2,0,1,2,...
por RafaelPereira » Dom Jun 09, 2013 17:08
- 0 Respostas
- 3332 Exibições
- Última mensagem por RafaelPereira

Dom Jun 09, 2013 17:08
Sequências
-
- [sequencia] Calcular limite de sequencia por definição
por amigao » Ter Abr 15, 2014 15:15
- 4 Respostas
- 3790 Exibições
- Última mensagem por e8group

Dom Mai 11, 2014 17:09
Sequências
-
- [Cálculo 2] Sequências
por Larissa28 » Qua Ago 12, 2015 00:20
- 4 Respostas
- 5368 Exibições
- Última mensagem por Larissa28

Seg Ago 17, 2015 23:06
Sequências
-
- Limite de sequências - Teste de Cauchy
por valeuleo » Seg Nov 21, 2011 16:27
- 1 Respostas
- 1735 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 10:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.