• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questão 69 da Fuvest 2012

questão 69 da Fuvest 2012

Mensagempor Alane » Dom Ago 05, 2012 13:03

Francisco deve elaborar uma pesquisa com dois artrópodes distintos. Eles serão selecionados, ao acaso, da seguinte relação:aranha,besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, escorpião, carrapato e gafanhoto. Qual a probabilidade de que os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos?

Eu selecionei os artrópodes que não são insetos, deram 8. Então minha conclusão foi se temos 8 artrópodes não insetos que serão selecionados em pares então teremos 56 possibilidades, pois 8 x 7= 56
Então a possibilidade de escolha será 56/144. Simplificando ficou 7/18. Mas o resultado correto é o 7/22. Não consegui chegar a estes 22. Gostaria de saber como eu poderia estar chegando no resultado correto.

Obrigada ^^
Alane
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 05, 2012 22:42
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: questão 69 da Fuvest 2012

Mensagempor fraol » Dom Ago 05, 2012 15:34

Boa tarde,

Por favor, reveja a classificação, pois:

Insetos:
besouro, barata, formiga, abelha, e gafanhoto

Não Insetos:
aranha, lagosta, camarão, ácaro, caranguejo, escorpião e carrapato.


Qual a probabilidade de que os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos?


É a probabilidade do primeiro não ser inseto e a probabilidade do segundo não ser inseto, i.e. : \frac{7}{12} \cdot \frac{6}{11}

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: questão 69 da Fuvest 2012

Mensagempor DanielFerreira » Dom Ago 05, 2012 15:48

Outra...

Combinações dos artrópodes: total

C_{12,2} = \frac{12 \cdot 11 \cdot 10!}{10! 2!} \\\\ \boxed{C_{12,2} = 66}


Combinações dos artrópodes: não são insetos

C_{7,2} = \frac{7 \cdot 6 \cdot 5!}{5! 2!} \\\\ \boxed{C_{7,2} = 21}


Segue que, a probabilidade procurada pode ser obtida calculando \frac{C_{7,2}}{C_{12,2}}

Daí,
\frac{C_{7,2}}{C_{12,2}} = \\\\ \frac{21}{66} = \\\\ \boxed{\boxed{\frac{7}{22}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: questão 69 da Fuvest 2012

Mensagempor e8group » Dom Ago 05, 2012 15:50

Boa tarde .


Considere o espaço amostral B = { aranha,besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, escorpião, carrapato , gafanhoto } ,

onde número de insetos equivale a 7 .

Logo a probabilidade de que ambos os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos é denotado por ,


p= \frac{\binom{7}{2}}{\binom{12}{2}} = \frac{7}{22}



OBS.: C_{i}^{n} = \binom{n}{i} = \frac{n!}{i!(n-i)!}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: questão 69 da Fuvest 2012

Mensagempor Nina Luizet » Dom Ago 02, 2015 15:31

Olá, pessoal.
Percebi que vocês utilizaram a combinação chave com o método mais demorado.Aqui vai uma dica:
C12,2 = 12.11/2! = 66
C7,2 = 7.6/2! = 21
P = n(a)/n(e) = 21/66 = 7/22
Nina Luizet
Nina Luizet
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Fev 16, 2015 12:39
Localização: Natal , RN , Brasil
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}