• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(C. Chagas) Logaritmos

(C. Chagas) Logaritmos

Mensagempor Souo » Ter Jun 30, 2015 01:50

A soluç?o da equaç?o log x^{2} + log x = 1



N?o consegui terminar, o resultado da 10^{1/3}
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (C. Chagas) Logaritmos

Mensagempor Baltuilhe » Ter Jun 30, 2015 18:00

Boa tarde!

Usando propriedade do logaritmo, teremos:

\\\log{x^2}+\log{x}=1\\
2\log{x}+\log{x}=1\\
3\log{x}=1\\
\log{x}=\frac{1}{3}\\
x=10^{1/_3}

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.