• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade resolução

Dificuldade resolução

Mensagempor Alvadorn » Sáb Fev 20, 2010 12:55

Imagem

Gente eu to com uma pequena dificuldade na resolução dessa questão, eu não estou sabendo utilizar o dado fornecido pela mesma, em função do segmento requisitado, o BD
Alguém poderia me encaminhar como iniciar a solução da mesma?

Desde já agradeço a atenção!
Alvadorn
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Fev 20, 2010 12:47
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldade resolução

Mensagempor Rodrigo Tomaz » Sáb Fev 20, 2010 14:24

Bom dia!
Estava dando uma olhadinha em sua questão e espero poder ajudá-lo.

No enunciado fornece apenas os ângulos e um lado.
Se você observar o angulo do vértice A é dividido em dois, um de 30° outro de 90°, formando um angulo de 120°.
O angulo do vértice C, também dividido em dois, mede ao todo 90°. Para saber quanto mede a parte restante subtrai-se com os 60º dados obtendo-se 30°.
Se formos olhar como resultou, teremos um triângulo ACE, com ângulos 120°,30 e 30°.

Como o triâgulo observado acima tem dois ângulos iguais, obrigatoriamente terá dois lados iguais (é um triângulo isósceles).
O lado fornecido AE, que mede 6cm, pertence ao triângulo e por não ser oposto ao ângulo diferente o lado AC terá o mesmo valor de 6cm.
Como o lado desejado pertence ao retângulo ABCD, e no mesmo AB=CD e AC=BD logo AC=BD=6cm

Essa questão também pode ser resolvida por outras linhas de raciocínio. Outra por exemplo seria fazer o jogo de senos, cossenos e tangentes descobrindo lado por lado até então chegar no valor desejado.

Eu acho que é isso,
Espero ter te ajudado
Anexos
questao1.jpg
Rodrigo Tomaz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 19, 2010 10:49
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico mecânica
Andamento: cursando

Re: Dificuldade resolução

Mensagempor Alvadorn » Dom Fev 21, 2010 16:32

Sua resposta está certíssima, mas meu objetivo era resolver através de senos e cossenos, mas graças ao seu raciocínio eu consegui chegar a resposta através dos senos. Muito obrigado novamente!
Alvadorn
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Fev 20, 2010 12:47
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}