• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação raiz e polinomio

Equação raiz e polinomio

Mensagempor Rosi7 » Sáb Mai 23, 2015 09:44

Para a={3}^{-1}.{81}^{2} e para b={2}^{4}.{6}^{3}.{9}^{2}  resolva \sqrt[7]{a.b}
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Equação raiz e polinomio

Mensagempor nakagumahissao » Dom Mai 24, 2015 01:54

Rosi7, pelas regras deste fórum você deveria ter detalhado o que já tentou fazer. Desta vez vou responder a questão mas por favor na próxima vez, tente nos dizer o que já foi feito por você para sanarmos sua dúvida e para que não fiquemos aqui apenas resolvendo os seus problemas de modo que você fique sem sem o principal, aprender.


Resolução:

Substituindo-se a e b debaixo da raiz usando os valores dados, teremos:

[1] \sqrt[7]{ab} = \sqrt[7]{{3}^{-1} \cdot {81}^{2} \cdot {2}^{4} \cdot {6}^{3} \cdot {9}^{2}} =

Decompondo-se 81, 6 e 9 tem-se que:

81 = {3}^{4}
{6}^{3} = {3}^{3} \cdot {2}^{3}
9 = {3}^{2}

Continuando a resolver [1] e utilizando as várias propriedades da radiciação, temos:

= \sqrt[7]{{3}^{-1} \cdot {({3}^{4})}^{2} \cdot {2}^{4} \cdot {3}^{3} \cdot {2}^{3} \cdot {({3}^{2})}^{2}} = \sqrt[7]{{3}^{-1} \cdot {3}^{8} \cdot {2}^{4} \cdot {3}^{3} \cdot {2}^{3} \cdot {3}^{4}} =

= \sqrt[7]{{3}^{14} \cdot {2}^{7}} = \sqrt[7]{{3}^{14}}  \cdot \sqrt[7]{{2}^{7}} = {3}^{2} \cdot 2 = 9 \times 2 = 18
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Equação raiz e polinomio

Mensagempor Rosi7 » Qui Mai 28, 2015 19:02

Grata e desculpa, esqueci de dizer, mas da próxima vez digo. Esta questão, não é do meu curso, é de um livro de matemática, aí fui fazer, e deu um numero enorme dentro da raiz, pois eu resolvia as potencias, multiplicava e depois ia tirar da raiz.
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Equação raiz e polinomio

Mensagempor Rosi7 » Qui Mai 28, 2015 19:33

Os: Achei interessante o poeta, educador Taylor Maly.
Agora a frase: "Eu faço crianças ficarem sentadas por mais de 40 minutos em sala de aula em silêncio absoluto."
Ele deve ser muito bom mesmo. Desculpa, debater o poema com você, mas isso me pareceu um pouco Freiriano.
Embora concorde que:
[...] Eu faço os alunos imaginarem.
Questionarem.
Criticarem.
Eu faço os alunos demonstrarem todos os cálculos matemáticos realizados para chegar às respostas dos problemas.
E faço com que apresentem a redação final como se nunca tivessem produzido um rascunho sequer.
Eu os faço entender que, se você tem um talento, deve segui-lo. [...]

Isso é Vygotsky etc .. e eu amo!
Acho que vou pesquisar sobre Maly.. e continuem colocando as frases, são maravilhosas!

Abraço!
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?