por yonara » Ter Jan 19, 2010 16:13
Olá. O meu problema é o seguinte:
A probabilidade de que você resolva corretamente a 1ª questão de uma prova é 1/3 e de que seu colega resolva corretamente é 2/5, sendo que ambos tentam, sozinhos, resolvê-la. Considere o experimento em que se verifica se a questão foi resolvida corretamente ou não pelos dois.
c) qual a probabilidade de pelo menos um resolver a questão corretamente?
Resp: 0,6
___________________________________________________________________
Eu tentei somando as probabilidades de "eu OU o colega" resolver a questão. E depois de "eu E o colega" resolver a questão, já que pede para pelo menos um resolver a questão. E no final multipliquei a probabilidade desses dois eventos, mas não consegui achar o resultado...
-
yonara
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Jun 30, 2009 18:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: medicina veterinária
- Andamento: cursando
por MarceloFantini » Qua Jan 20, 2010 11:28
Bom dia Yonara!
Na situação dada, você concorda que apenas existem quatro casos possíveis:
- A
acerte a questão e B
erre;
- A
acerte a questão e B
acerte também;
- A
erre a questão e B
acerte;
- A
erre e B também
erre.
Portanto, você concorda que a probabilidade de que
pelo menos um acerte é a probabilidade de todos os casos menos o que todos erram? Logo:





Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por yonara » Qui Jan 21, 2010 00:44
eu entendi bem! muito obrigada.

-
yonara
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Jun 30, 2009 18:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: medicina veterinária
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probabilidade simples
por tiagofe » Qua Abr 20, 2011 07:46
- 3 Respostas
- 4392 Exibições
- Última mensagem por tiagofe

Sáb Abr 23, 2011 09:50
Estatística
-
- probabilidade simples
por ezidia51 » Qui Jun 28, 2018 19:54
- 0 Respostas
- 5559 Exibições
- Última mensagem por ezidia51

Qui Jun 28, 2018 19:54
Probabilidade
-
- PROBABILIDADE SIMPLES
por gabrielpacito » Ter Mar 06, 2018 01:52
- 1 Respostas
- 6466 Exibições
- Última mensagem por Gebe

Ter Mar 06, 2018 02:51
Probabilidade
-
- PROBABILIDADE SIMPLES
por gabrielpacito » Ter Mar 06, 2018 01:50
- 1 Respostas
- 5477 Exibições
- Última mensagem por Gebe

Ter Mar 06, 2018 02:30
Probabilidade
-
- PROBABILIDADE SIMPLES
por gabrielpacito » Ter Mar 06, 2018 01:49
- 0 Respostas
- 4084 Exibições
- Última mensagem por gabrielpacito

Ter Mar 06, 2018 01:49
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.