• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite com raízes] - É possível calcular sem usar l'Hopital

[Limite com raízes] - É possível calcular sem usar l'Hopital

Mensagempor Brunorp » Sáb Mar 28, 2015 18:25

Saberiam calcular sem usar o teorema de l'Hospital?
\lim_{x - 0}\frac{\sqrt[2]{1+x+{x}^{2}}-1}{x}
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Limite com raízes] - É possível calcular sem usar l'Hop

Mensagempor adauto martins » Seg Mar 30, 2015 21:11

L=\lim_{x\rightarrow 0}((\sqrt[]{{x}^{2}+x+1}-1)/x).(\sqrt[]{{x}^{2}+x+1}+1)/(\sqrt[]{{x}^{2}+x+1}+1)=\lim_{x\rightarrow 0}{x}^{2}+x+1-1/(x.\sqrt[]{{{x}}^{2}+x+1}+1)=\lim_{x\rightarrow 0}x+1/(\sqrt[]{{x}^{2}+x+1}+1)=1/2
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Limite com raízes] - É possível calcular sem usar l'Hop

Mensagempor Brunorp » Ter Mar 31, 2015 21:58

obrigado!
Conseguiria me ajudar com esse aqui?
\lim_{x\rightarrow+\infty}\frac{\sqrt[]{{x}^{2}-3}}{\sqrt[3]{{x}^{3}+1}}
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Limite com raízes] - É possível calcular sem usar l'Hop

Mensagempor adauto martins » Qua Abr 01, 2015 12:51

L=\lim_{x\rightarrow \infty}x(\sqrt[]{1-3/{x}^{2}})/x(\sqrt[3]{1/{x}^{3}+1})=\lim_{x\rightarrow \infty}(\sqrt[]{1-3/{x}^{2}}/(\sqrt[3]{1/{x}^{3}+1})=1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59